The Hinge Theorem

This is one of several inequality theorems for triangles.
Theorem. Given triangles $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$ which satisfy $|\mathrm{AC}|=|\mathrm{AD}|$, then we have $|B C|<|B D|$ if and only if $|\angle C A B|<|\angle D A B|$.

This result, which can be proved using the Law of Cosines from trigonometry

$$
c^{2}=a^{2}+b^{2}-2 a b \cos |\angle A C B|
$$

yields a companion result to the Pythagorean Theorem.
Corollary. Given triangle $\triangle A B C$, let $a=|B C|, b=|A C|$, and $c=|A B|$. Then $\angle C A B$ is acute if $c^{2}<a^{2}+b^{2}$ and $\angle \mathrm{CAB}$ is obtuse if $\boldsymbol{c}^{2}>\boldsymbol{a}^{2}+b^{2}$.

