Remark on a proof in the Elements

In the Elements, Euclid gave a simple proof of the following result, and in many respects his proof is still the best one:

THEOREM. There are infinitely many (positive) primes.

The proof is by contradiction. Assuming that there are only \boldsymbol{n} primes $\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{\boldsymbol{n}}$ Euclid shows that $\left(p_{1} \ldots p_{n}\right)+\mathbf{1}$ is not divisible by any of them, and since every integer greater than $\mathbf{1}$ is a product of primes there must be a prime not equal to any of the \boldsymbol{p}_{j} 's, a contradiction which shows that there must be infinitely many primes.

Unfortunately, there is a common misunderstanding of exactly what the argument implies. Namely, the argument does NOT imply the following statement:

$$
\text { If } p_{1}, \ldots, p_{n} \text { are the first } \boldsymbol{n} \text { primes, then }\left(p_{1} \ldots p_{n}\right)+\mathbf{1} \text { is also prime. }
$$

The simplest way to disprove this statement is to note that

$$
(2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13)+1=30031=59 \cdot 509
$$

is not prime.
This and other common misconceptions are described in the following reference:

