
 

 

4.  Alexandrian mathematics after Euclid  —  I 
 
 

(Burton, 4.1 – 4.5) 
 
 
During the 150 years after the death of Alexander the Great in 323 B.C.E., there were 
three mathematicians whose accomplishments in the subject were particularly 
outstanding.  The first of these was Euclid, and in chronological order the others were 

Archimedes of Syracuse (287 – 212 B.C.E.) and Apollonius of Perga (262 – 190 
B.C.E.).  While Euclid is mainly known for his masterful exposition of earlier results by 
Greek and other mathematicians, both Archimedes and Apollonius are recognized for 
their deep and original work that went far beyond the findings of their predecessors in 
several respects.   In particular, much of their research foreshadowed, or strongly 
influenced, the development of analytic geometry and calculus more than 18 centuries 
later.  Some of their major accomplishments will be summarized below. 
 

Another extremely important contributor from this period was Eratosthenes of Cyrene 

(276 – 197 B.C.E.); there is an extensive summary of his work in Burton, and we shall 
add a few remarks and links to related web sites.  The centuries after Alexander the 
Great were an extremely productive time for Greek mathematics, and many other 
talented individuals also made important contributions during this period.  We shall 
mention a few of them at the end of this unit. 

 
Archimedes of Syracuse 

 
Archimedes is generally viewed as the single most important contributor to mathematics 
during the classical Greek period (and even the period up to the Renaissance in 
Europe).  This is due to the depth, insight, extent and originality of his work.  It is only 
possible to mention a few of his contributions in a brief summary like these notes. 
  

Although Archimedes and Euclid are two particularly outstanding figures in ancient 
Greek mathematics, the reasons are quite different.  While Euclid is mainly known for 
presenting a large body of known mathematical results in a form that could be studied 
effectively, the writings of Archimedes are mainly devoted to new types of problems and 
new perspectives on old ones.  His writings were addressed to individuals who had 
already mastered basic material, and as such they were less widely read or understood. 
This is probably one reason why Archimedes’ work was preserved less systematically 
than Euclid’s. 
 

Here is a brief selective summary of some contributions to mathematics by Archimedes: 
 

Measurement of the the circle.  There is also a discussion of this in Burton from the 

first full paragraph on page 199 to the end of the subsection on page 202. The main 

contribution here is a proof that the area of a circle is π r
 2

, where as usual π    is the ratio 
of the circumference to the diameter (for whatever it might be worth, we should mention 

that the letter π was first used to denote this quantity in the early 17th century, but its 
general usage dates back to the  18th century writings of Euler).  Archimedes also 

estimated this number as lying between  3 + (10/71), which is  3.1408 ... , and the 



 

 

familiar approximation  3 + (1/7), which is  3.1428 ... . This is done using the method of 
exhaustion developed by Eudoxus;  similar but less logically sound ideas were 

previously advanced by the Sophists Antiphon (480 – 411 B.C.E.) and Bryson of 

Heraclea (c. 450 – c. 390 B.C.E.), who concluded that the actual values were reached 
for some figure with sides of some minimal infinitesimal length. The idea behind this 
method is the set of points inside or on a circle is “exhausted” by taking an increasing 

sequence of inscribed regular polygons with 3 ∙ 2
n
 sides for larger and larger values of n, 

and one examines the behavior of these measurements as n becomes increasingly 
large.  The interactive picture in the following citation provides motivation for this idea. 
 

https://www.geogebra.org/m/HN4mtnML 

 
Quadrature of the parabola.  The problem here is to find the area of a region bounded 
by a parabola and a segment joining two points on the parabola.  This again uses the 
method of exhaustion and it is enlightening to compare his method with a more modern 
one that uses integral calculus at two key points. In particular, this provides some insight 
into just how close Archimedes came to discovering calculus 1900 years before Newton 
and Leibniz (and possibly what he missed).   Archimedes proved that the area of the 

parabolic segment depicted below is 4/3 the area of the triangle inscribed in it according 
to the picture (specifically, the bottom vertex is situated so that its tangent line is parallel 
to the chord joining the other two points on the curve). 
 

 
 

The first crucial step in his proof is an observation related to the picture below; namely, 

he shows that the combined areas of the smaller inscribed triangles ����ACJ and ����BCK 

are equal to one fourth the area of the larger triangle ����ABC.  Thus the area of the 

inscribed polygon AJCKB is 5/4 the area of the area of the original triangle.  
 

 
http://mtl.math.uiuc.edu/modules/module15/Unit%202/archim_ex.html 

 



 

 

One can now apply the same argument to each of triangles ����ACJ and ����BCK, 

obtaining a third inscribed polygon whose area is 1  +  (1/4)  +  (1/16) times the area of 
the original triangle, and after doing this one can continue the process indefinitely.  The 
site below has a nice animated picture of a few steps in the process:  
 

http://www.ms.uky.edu/~carl/ma330/projects/parasegfin1.html 
 

If we continue in this manner indefinitely we shall exhaust the entire region bounded by 
the parabola and the chord, and using infinite series we would conclude that the ration of 
the parabolic sector’s area to that of the original triangle is equal to 
 

 
 

However, as noted in the discussion of Zeno’s paradoxes, the Greek mathematicians did 
not work with infinite series, and therefore it was necessary for Archimedes to use 
another method (a double reductio ad absurdum proof) to verify that the ratio was indeed 
equal to this value. 
 

In Addendum 4A to this unit we shall indicate how one can retrieve Archimedes’ result 
on the area of the parabolic sector using methods from integral calculus. 
  

Sphere and cylinder.   This is the work that Archimedes himself liked the best.  Using a 
mixture of intuition based upon mechanical experiments, manipulating infinitesimals that 
he did not feel were logically adequate to use in formal proofs, and formal proofs 
themselves, Archimedes obtained the standard results we know today; for example, if 
one circumscribes a right circular cylinder about a sphere, the volume of the sphere is 

2/3 the volume of the cylinder, and the surface area of the sphere is 2/3 the total 

surface area of a circumscribed cylinder (to prove these identities, use the standard area 
and volume formulas plus the fact that the height of the cylinder is twice the radius of the 
sphere).  An illustration of this relationship, which became his epitaph, is displayed 
below: 

 
 

(Source: http://www.math.nyu.edu/~crorres/Archimedes/Tomb/sphere_cylinder.jpg) 
 

Another important contribution of this work is a solution to the following problem:  

Given a number  r  between  0  and  1, determine where to cut a sphere by a plane so 

that the ratio of one part's volume to that of the entire sphere is equal to  r.   
  

The Method [ of Mechanical Theorems ] .  This manuscript, which was lost for 1500 
years or more, unknown during the Middle Ages, and not discovered until 120 years ago, 
details how Archimedes obtained his results on areas and volumes by a mixture of 
mechanical experiments and logical deduction.  He devised informal techniques using 



 

 

statics and infinitesimals to derive some conclusions that we would characterize today 
as integral calculus, but he then presented rigorous geometric proofs using the method 
of exhaustion for his results.    The following link provides a good description of 
Archimedes’ approach: 
 

http://en.wikipedia.org/wiki/How_Archimedes_used_infinitesimals 
 

This method of discovery is often described as a heuristic (hyoo-RIS-tic) argument.  For 
the sake of completeness we quote a more detailed description:  
 

…  something  “providing aid in the direction of the solution of a problem 
but otherwise unjustified or incapable of justification.”  So heuristic 
arguments are used to show what we might later attempt to prove, or 
what we might expect to find in a computer run.  They are, at best, 
educated guesses.   

 

(Source: http://primes.utm.edu/glossary/page.php?sort=Heuristic ) 

 

In less formal and more balanced terms, heuristic arguments often provide extremely 
valuable suggestions on what to look for, but other means are generally required to 
verify that the suggested answers are actually correct. 

 

Mathematicians and others have frequently used heuristic arguments to search for 
answers to questions before attempting to write down formal proofs, and it is difficult to 
imagine that this will ever change.   In the words of Archimedes from the introduction to 
The Method,  “It is easier to supply the proof when we have previously acquired, by the 
method, some knowledge of the questions than it is to find it without any previous 
knowledge.”   
 

The importance of Archimedes’ manuscript on The Method was immediately 
recognized upon its discovery.  Unfortunately, for many years scholars had no access to 
the manuscript, and forged illustrations were added in a misguided effort to increase the 
manuscript’s value. However, during the past two decades considerable work has been 
done to retrieve the original content, and it is now freely available. For more on this topic 
see https://en.wikipedia.org/wiki/Archimedes_Palimpsest. 

 
This and other works lead naturally to questions about how close Archimedes actually 
came to discovering integral calculus; however, the extent to which he actually 
discovered integral calculus nearly 2000 years before Newton and Leibniz is debatable.  
Archimedes studied specific problems in depth, and the breakthroughs of Newton and 
Leibniz develop general methods for solving large and general classes of problems; 
the extent to which Archimedes envisioned something like this is unclear; for example, 
his approach was designed to avoid the concept of limit rather than to analyze it directly.   
Additional information on The Method appears on page 206 of Burton. 
 

Conoids and spheroids.  This work calculates the area of the region bounded by an 
ellipse and volumes of some simple surfaces of revolution. In this book Archimedes 
calculates the areas and volumes of sections of cones, spheres and paraboloids.  Here 
is one typical result:  Suppose we are given a parabolic segment as in the picture below 
an inscribed isosceles triangle as illustrated.  Let P and C be the respective solids of 

revolution formed by rotating the parabolic segment and triangle about the x – axis.   

Then the volume of C is  2/3  the volume of P.  One can use calculus to derive such 

a formula fairly easily, particularly with a simplifying assumption such as p  =  h  =  1 
in the figure below.   
 



 

 

 
 

Other results include volume formulas for hyperboloids of revolution and spheroids 
obtained by rotating an ellipse either about its major axis or about its minor axis.  
 
Here are some other results which were proved using Archimedes’ methods:   
 

(1) The area of an ellipse is proportional to a rectangle having sides equal  
to its major and minor axes. 

 

(2) The volume of a sphere is 4 times that of a cone having a base of the same  
radius and height equal to this radius. 

 

(3) The area bounded by one spiral rotation and a line is 1/3 that of the circle  
having a radius equal to the line segment length. 

 

Here is a drawing for the spiral region.  It provides a transition to another topic in 
Archimedes’ work.   
 

 
  

https://i.stack.imgur.com/OV002.png  

 
On spirals.   Since ancient times, many have viewed this as one of Archimedes’ best 
and most remarkable works.  He studies the properties of the spiral curve given in polar 



 

 

coordinates by r = θθθθ   (the so-called Archimedean spiral, also considered by 
Archimedes’ close associate Conon of Samos, who lived from 280 B.C.E to 220 
B.C.E.), and he proves a long list of facts about this curve.  Many of these results are 
relatively straightforward once one has the methods of calculus, and it is particularly 
striking to examine how Archimedes obtained all these results apparently without having 
calculus at his disposal.  In particular, he gives results on tangent lines to the spiral as 
well as finding the areas of certain regions whose boundaries include pieces of the 
spiral.   There is a definitive and highly readable English translation of this work on 

pages 151 – 188 of the following book: 
 

T. L. Heath (ed.), The works of Archimedes (Reprint of the 1897 edition 
with a 1912 supplement on The Method).   Dover  Books,  New York,  2002. 

 

Two important results in the paper on spirals were the applications of the spiral to 

classical construction problems; namely, n – secting an angle for arbitrary n  >  2 and 
squaring the circle.  More information about Archimedes’ results on the spiral appears 

on pages 203 – 204 of Burton and also in Exercises 10 – 12 on pages 210 of the latter.   
 

 
 

 
The Sand Counter.   This was aimed at a more popular audience.  The objective was to 
show how one could express and handle very large numbers like the number of grains of 
sand on a beach.  In particular, their techniques provided a method for describing 

numbers up to 10 

64
.   Archimedes’ approach to this problem anticipates the power 

notation that we use today for large numbers.  A more detailed discussion of this work 
appears in Burton, beginning on page 195 and continuing into the next page.   Another 

problem about large numbers due to Archimedes (the so – called Cattle Problem) will 
be discussed in the unit on late Greek mathematics. 
  
Equiponderance of planes.  (also called On the Equilibrium of Planes).  This is more 
mechanics than mathematics, but it is relevant to both subjects because it develops the 
basic ideas involving the center of mass for a physical object.  He was the first to identify 
the concept of center of gravity, and he found the centers of gravity of various geometric 
figures, assuming uniform density in their interiors, including triangles, paraboloids, and 
hemispheres.   
 
On floating bodies.  This is probably Archimedes’ most profound work.  Using only the 
standard methods of Greek geometry, he also gave the equilibrium positions of floating 



 

 

sections of paraboloids as a function of their height. The computations are even a 
challenge for someone who has mastered first year calculus.  These works were  
probably motivated by physical questions about the shapes of ships’ hulls.  Some of his 
sections float with the base under water and the summit above water, which is 
reminiscent of the way icebergs float, although Archimedes probably was not thinking of 
this application.  Here are two illustrated references with additional information: 

 
https://math.nyu.edu/~crorres/Archimedes/Floating/floating.html 

 
https://math.nyu.edu/~crorres/Archimedes/Floating/rorres_paraboloids_MI.pdf 

 
 

Other works.   At the end of http://math.ucr.edu/~res/math153/history03d.pdf  we 
mentioned that Archimedes described a family of 13 regular figures which are called 
Archimedean solids; however, his writings on these objects are now lost.  Here are two 
online references for these solids.  The first has verbal descriptions and the second has 
some excellent illustrations:  

 

http://mathworld.wolfram.com/ArchimedeanSolid.html 
 

https://www.youtube.com/watch?v=tQa7xgWkuLw  
 

The respect for Archimedes among ancient scholars is reflected in their use of the term 

Archimedean Problem to denote one that was exceptionally deep and difficult (c f. the 
frequently used term Herculean task )  and Archimedean proof to denote a logical 
argument that was absolutely reliable and in the best possible form.  
 
The work of Archimedes also had a major impact on physics, and most notably on 
mechanics.  His description of six simple mechanical machines is still used today.  
Although the following video is aimed at elementary school students and the tone might 
seem too juvenile, it does summarize these machines and their uses very effectively:  
 

https://www.youtube.com/watch?v=UtfVZtuyuHU 

  
Biographical information about Archimedes 

 
Some information about Archimedes’ life is indisputable, but many aspects of the more 
colorful stories are questionable.  He definitely had close ties to the rulers of his native 
city, Syracuse in Sicily, and many things he did were for the benefit of the rulers of the 
city and the city itself.  His resourcefulness and vast knowledge of mathematics and 
mechanics played an important role in the resistance that Syracuse mounted against 
Roman efforts at conquest, and it is universally accepted that he was killed when the 
Romans finally overran the city in 212 B.C.E., even though this was against the orders of 

the Roman general Marcus Claudius Marcellus (c. 268 B.C.E. – 208 B.C.E.), who led 
the assault.   Further information on Marcellus and the historical background is available 
the following online sites.  The second link is particularly detailed: 
 

http://en.wikipedia.org/wiki/Marcus_Claudius_Marcellus 
 

http://www.livius.org/cg-cm/claudius/marcellus.html 
 
 

In contrast to the reliable information given above, ancient historians mention at least 
three possible ways in which Archimedes was killed, and still other scenarios seem very 
plausible.   Also, the frequently repeated stories about his best known scientific 



 

 

discovery — the Archimedean buoyancy principle for fluids — are also at least 
somewhat questionable, and in fact there are conflicting accounts for some details of 
these stories.     
 

 
 

(Source: https://www.eurovps.com/blog/wp-content/uploads/2017/11/eureka.jpg) 

 
Here are some references which discuss the validity of the story in detail: 

 

https://www.scientificamerican.com/article/fact-or-fiction-archimede/ 
 

https://www.ted.com/talks/armand_d_angour_the_real_story_behind_archimedes_eureka/transcript 

 
Fortunately, the record of his scientific and engineering achievements is much more 
reliable than such frequently repeated anecdotes.   

 
Addenda to this unit (actually for all three sub-units 4X, 4Y, and 4Z) 

 
There are four items, the first which (4A) proves two results of Archimedes and 
Apollonius  using modern techniques (we shall discuss Apollonius in the second part of 
this unit), the second of which (4B) discusses the relation between normal lines to conics 
and the least distance between a conic and an external point which will is mentioned in 
the second part of this unit, and the third of which (4C) contains some results on 
continued fractions expanding upon the coverage in the third part of this unit.  Finally, 
the fourth file (4D) explicitly describes the relationship between the classical Greek view 
of conic sections (namely, the curves in which a cone and a plane intersect) with the 
usual coordinate approach in which these plane curves are described as the set of 
points where some second degree polynomial in the coordinates are equal to zero.   


