The evolute of a plane curve

This concept is implicit in the work of Apollonius on conics, but the general study began about 1800 years later in work of C. Huygens (1629-1695). The evolute of a plane curve is a new curve constructed out of an given one. Its description depends upon the notion of curvature for a plane curve, so we shall describe this first.

Suppose that $\mathbf{p}(\boldsymbol{t})=(\boldsymbol{x}(\boldsymbol{t}), \boldsymbol{y}(t))$ is a parametrized curve in the coordinate plane, and assume the coordinate functions have as many derivatives as needed for the discussion to be meaningful. Then the velocity vector $\mathbf{v}(\boldsymbol{t})=\left(\boldsymbol{x}^{\prime}(t), y^{\prime}(t)\right)$ is obtained by differentiating the coordinate functions. Let's assume that the curve is never instantaneously at rest; mathematically this corresponds to assuming that the velocity vector is never zero. In this case there is a change of variables $s=s(t)$ such that the velocity vector $\mathbf{v}(\boldsymbol{s})$ for the reparametrized curve $\mathbf{p}(\boldsymbol{s})$ always has unit length. The curvature $\boldsymbol{\kappa}(s)$ is then defined to be $\mathbf{1} /\left|\mathbf{v}^{\prime}(\boldsymbol{s})\right|$ provided that the denominator is not zero. It turns out that $\mathbf{v}^{\prime}(\boldsymbol{s})$ and $\mathbf{v}(\boldsymbol{s})$ are perpendicular to each other if the latter holds, and in this case we define the principal unit normal vector $\mathbf{n}(\boldsymbol{s})$ to be the unit vector pointing in the same direction as $\mathbf{v}^{\prime}(s)$.

If the curve traces out a circle of radius $\boldsymbol{r} \neq \mathbf{0}$, then the curvature at every point turns out to be $\mathbf{1} / r$. In a very precise sense the curvature measures how much the curve is bending at a given point; higher curvature means the curve is bending more. Specifically, if we define the osculating circle to be the circle which passes through the point $\mathbf{p}(\boldsymbol{s})$ and whose center is given by $\mathbf{p}(s)-\kappa(s)^{-1} \mathbf{n}(s)$, then the osculating circle can be viewed as the best circular approximation to the original curve at parameter value s.

(Source: http://mathonline.wikidot.com/the-osculating-circle-at-a-point-on-a-curve)

We can now define the evolute $\mathbf{E p}(\boldsymbol{s})$ of $\mathbf{p}(\boldsymbol{s})$ such that $\mathbf{E p}(\boldsymbol{s})$ is the center of the osculating circle for the original curve at the point $\mathbf{p}(s)$.

