
 
 

Heron’s formula for the area bounded by a triangle 
 
The standard formula for the area bounded by a triangle BAC  is  A(BAC)  =   ½ bh,  
where d(A, C)  =  b and h is the length of the altitude from B to AC; hence if D is the foot of the 
perpendicular from B to AC,  then we have  d(B, D)  =  h.   One can also find the area bounded 
by ABC in terms of the lengths of its sides using a formula named after Heron (or Hero) of 
Alexandria (10 A.D. – 75 A.D.). 
 

Theorem  (Heron’s Formula)   Given ABC, denote the lengths of its sides by  d(B, C)  =  a,  
d(A, C)  =  b,  and  d(A, B)  =  c, and let  s  =  ½(a + b + c).  Then we have 

 

A(ABC)   =   sqrt(s(s – a)(s – b)(s – c) ). 
 

Proof.    We know that at least two of the vertex angle measures for the triangle are less than 
180, and without loss of generality we might as well assume that both | BCA | and | CAB | 

are less than 90; the other cases will follow by interchanging the roles of A, B and C.   Let D  
AC be such that BD is perpendicular to AC.  Then a corollary to the Exterior Angle Theorem 
implies that D lies on the open segment (AC).   
 

 
 

Let d(B, D)  =  h, and let  d(A, D)  =  x, so that d(C, D)  =  b – x. The central idea will be to 
solve for h in terms of s, a, b, and c using the Pythagorean Theorem and some algebraic 
manipulations. 
 

Applying the Pythagorean Theorem to right triangles ADB and BDC, we obtain the 
equations 
 

x2  +  h2   =   c2                  (b –  x) 2  +  h2   =   a2 
 

and if we solve for h2 we obtain the equations c2 –  x2   =  h2  =  a2 –  b2  + 2bx  –  x2.  Adding 
x2 to each side of this equation yields c2  =   a2 –  b2  + 2bx, and if we solve this for x we find 
that  x   =   (c2 –  a2  +  b2)/2b.   Substituting this back into the first equation we find that  
 

h2  =  c2 –  x2    =   c2 –  [(c2 –  a2  + b2)/2b] 
2. 

 

If Q denotes the area bounded by ABC, then we know that Q  =  hb/2, and therefore we 
have  
 

Q 
2   =  h2 b2/4   =   [4c2b2  –  (c2– a2 + b2)2]/16   = 

 

(2a2c2 + 2a2b2 + 2c2b2  –  a4  –  c4  –  b4)/16. 



 

The final expression for Q 
2 should look promising because it is symmetric in a, b and c.  .We 

must now see if we can to rewrite this expression more concisely.   The key to doing so is the 
following algebraic identity, which may be checked directly by expanding the right hand side:   
 

2a2c2 + 2a2b2 + 2c2b2  –  a4  –  c4  –  b4    = 
 

(a + b + c)( – a + b + c)( a – b + c)( a + b – c) 
 

If we let p  =   a + b + c (the perimeter), then we have  
 

(a + b + c)( – a + b + c)( a – b + c)( a + b – c)   =    p(p – 2a)(p – 2b)(p – 2c) 
 

and we may use these equations to write to write 
 

Q 
2   =   p(p – 2a)(p – 2b)(p – 2c)/16. 

 

If we now let p  =   2s, then the preceding equation becomes  
 

Q 
2   =   p(p – 2a)(p – 2b)(p – 2c) /16   =   2s(2s – 2a)(2s – 2b)(2s – 2c) /16   = 

 

16s(s – a)(s – b)(s – c)/16   =   s(s – a)(s – b)(s – c) 
 

and if we take square roots of both sides we obtain the area formula in the statement of the 
theorem. 
 
 

 


