6 The Extended Real Number System

6.1 The Extended Real Line

It is often convenient to make use of the extended real line $[-\infty, +\infty]$. This is the set $\mathbb{R} \cup \{-\infty, +\infty\}$ obtained on adjoining to the real line \mathbb{R} two extra elements $+\infty$ and $-\infty$ that represent points at 'positive infinity' and 'negative infinity' respectively. We define

$$c + (+\infty) = (+\infty) + c = +\infty$$

and

$$c + (-\infty) = (-\infty) + c = -\infty$$

for all real numbers c. We also define products of non-zero real numbers with these extra elements $\pm \infty$ so that

$$c \times (+\infty) = (+\infty) \times c = +\infty$$
 when $c > 0$,
 $c \times (-\infty) = (-\infty) \times c = -\infty$ when $c > 0$,
 $c \times (+\infty) = (+\infty) \times c = -\infty$ when $c < 0$,
 $c \times (-\infty) = (-\infty) \times c = +\infty$ when $c < 0$.

We also define

$$0 \times (+\infty) = (+\infty) \times 0 = 0 \times (-\infty) = (-\infty) \times 0 = 0,$$

and

$$(+\infty) \times (+\infty) = (-\infty) \times (-\infty) = +\infty,$$

 $(+\infty) \times (-\infty) = (-\infty) \times (+\infty) = -\infty.$

The sum of $+\infty$ and $-\infty$ is not defined. We define $-(+\infty) = -\infty$ and $-(-\infty) = +\infty$). The difference p-q of two extended real numbers is then defined by the formula p-q=p+(-q), unless $p=q=+\infty$ or $p=q=-\infty$, in which cases the difference of the extended real numbers p and q is not defined.

We extend the definition of inequalities to the extended real line in the obvious fashion, so that $c<+\infty$ and $c>-\infty$ for all real numbers c, and $-\infty<+\infty$.

Given any real number c, we define

$$\begin{aligned} [c,+\infty] &= [c,+\infty) \cup \{+\infty\} = \{p \in [-\infty,\infty] : p \ge c\}, \\ (c,+\infty] &= (c,+\infty) \cup \{+\infty\} = \{p \in [-\infty,\infty] : p > c\}, \\ [-\infty,c] &= (-\infty,c] \cup \{-\infty\} = \{p \in [-\infty,\infty] : p \le c\}, \\ [-\infty,c) &= (-\infty,c) \cup \{-\infty\} = \{p \in [-\infty,\infty] : p < c\}. \end{aligned}$$