6.C. The Chinese Remainder Theorem

We shall begin with the standard Long Division Property of the integers: Let a and b be positive integers with $b \ge 2$. Then there are unique nonnegative integers q (the quotient) and r (the remainder) such that

$$a = bq + r$$

where $0 \leq r < b$.

We may then state the Chinese Remainder Problem as follows:

Let $p, q \ge 2$ be relatively prime (no common divisors except ± 1), and let a and b be nonnegative integers. Find all positive integers n such that n leaves remainders of a and b after long division by p and q.

For example, we might take p = 3 and q = 5, with a = 2 and b = 3.

Congruences

The most efficient way of solving such problems involves the notion of *congruence* for integers.

Definition. Let $m \ge 2$ be an integer, and let u and v be arbitrary integers. Then u and v are said to be congruent modulo m, writteh $u \equiv v$ (m) if and only if u - v is (evenly) divisible by m (with zero remainder). This concept has the following properties:

- (1) If r is the remainder of u after long division by m, then $u \equiv r$ (m).
- (2) If $0 \le r_1 < r_2 < m$, then $r_1 \ne r_2$ (m).
- (3) If $a \equiv b$ (m) then $b \equiv a$ (m).
- (4) If $a \equiv b$ (m) and $b \equiv c$ (m), then $a \equiv c$ (m).
- (5) If $a \equiv a'$ (m) and $b \equiv b'$ (m), then $a + b \equiv a' + b'$ (m) and $ab \equiv a'b'$ (m).
- (6) If c is relatively prime to m, then there is a positive integer d such that $dc \equiv 1$ (m).

The last property is particularly important for the Chinese Remainder Problem, for it implies that we can find integers d and k such that cd = 1 + km. For small values of m and c one can often find d and k by trial and error. For example, if m = 20 and c = 7, then we can take d = 3. Similarly, if m = 7 and c = 5, then we can take d = 3, and if m = 5 and c = 7, then we can take d = 4. We shall begin by looking at examples of c, m where it is easy to find d, and at the end we shall discuss the general method for finding d in more complicated cases.

Simple examples

1. In the setting of the preceding paragraph, find d if m = 7 and c = 6, likewise if m = 6 and c = 7.

SOLUTION. We have d = 6 in the first case and d = 7 in the second (verify these claims).

2. The example at the beginning of this document can be rewritten to ask for all integers n such that $n \equiv 2$ (3) and $n \equiv 3$ (5).

SOLUTION. We are interested in finding all integers of the form 3p + 2 such that $3p + 2 \equiv 3$ (5). Subtracting 2 from each side we obtain the equivalent congruence $3p \equiv 1$ (5), and p = 2 is one

solution. More generally, every integer p = 5k + 2 is a solution and this yields all solutions. Therefore the solutions to the original system are given by integers of the form

$$n = 3 \cdot (5k+2) + 2 = 15k + 8$$

and conversely it is easy to verify that each integer of this form solves the original problem. Therefore we may write the solution in the form $n \equiv 8$ (15).

3. Suppose we modify the example to add a third condition: Find all integers n such that $n \equiv 2$ (3), $n \equiv 3$ (5), and $n \equiv 5$ (7).

SOLUTION. One begins by solving the problem with the first two conditions, which yields $n \equiv 8$ (15), and proceeding to solve a problem involving the result of the first step plus the third condition $n \equiv 5$ (7). To complete the final step we need to find all solutions of the congruence $15k + 8 \equiv 5$ (7).

The congruence in the preceding sentence can be rewritten in the form $k+1 \equiv 5$ (7), and from this we see that $k \equiv 4$ (7) or k = 7m + 4. Therefore the general solution has the form

$$n = 15k + 8 = 15(7m + 4) + 8 = 105m + 68$$

or equivalently $n \equiv 68$ (105). Obviously we can handle systems of four or more congruences similarly, provided that the numbers by which we divide are pairwise relatively prime.

4. Find all integers n such that $n \equiv 7$ (8) and $n \equiv 3$ (9).

SOLUTION. We need to find all solutions to $8p + 7 \equiv 3$ (9). This reduces to $8p \equiv -4 \equiv 5$ (9). Now $8 \cdot 8 \equiv 1$ (9), so the last congruence implies that $p \equiv 8 \cdot 8p \equiv 8 \cdot 5 \equiv 4$ (9). Therefore p = 9q + 4, so that

$$n = 8(9q+4) + 7 72q + 39$$

or $n \equiv 39$ (72).

5. Find all integers n such that $n \equiv 13$ (27) and $n \equiv 7$ (16).

SOLUTION. We need to find all solutions to $27p+13 \equiv 7$ (16). This reduces to $27p \equiv -6 \equiv 10$ (16), and we may rewrite this as $11p \equiv 10$ (16). Now $11 \cdot 3 = 33 \equiv 1$ (16), so we have

$$p \equiv 3 \cdot 11 p \equiv 30 \equiv 14 (16)$$

so that n = 27(16q + 14) + 13 = 432q + 391, or equivalently $n \equiv 391$ (432).

Solving $cd \equiv 1$ (m) systematically

In the preceding examples we were fortunate enough to be able to solve the congruence problem by trial and error for suitable choices of c and m. Obviously we need something which is more reliable, particularly if we are given more complicated problems. Specifically, we need the following:

THEOREM. Suppose that a and b are relatively prime positive integers greater than 1. Then there exist integers s and t such that sa + tb = 1. In fact, we can always find a pair of such integers for which s is positive.

Proof. The process of finding s and t is called the *Euclidean algorithm*; not surprisingly, it appears in Euclid's *Elements*. Let's suppose that a > b. Then by long division we may write $a = bq_1 + r_1$

where $0 < r_1 < b$; we know that the remainder is positive because a and b are relatively prime. We now recursively define integers q_i and r_i as follows until we reach an integer k such that $r_{k+1} = 0$:

$$b = r_1 q_2 + r_2, \text{ where } 0 < r_2 < r_1$$

$$r_1 = r_2 q_3 + r_3, \text{ where } 0 < r_3 < r_2$$

...

$$r_{k-2} = r_{k-1} q_k + r_k, \text{ where } 0 < r_k < r_{k-1}$$

$$r_{k-1} = r_k q_{k+1} + 0$$

In other words, r_k is the last positive remainder in the sequence. Let's define $r_0 = b$ and $r_{-1} = a$ because that will allow us to add $a = bq - 1 = r_1$ at the top of this list and express all the equations with uniform notational conventions.

A recursive argument now shows that each remainder r_j (where $-1 \le j \le k$) can be written in the form $s_j a + t_j b$ for suitable integers s_j, t_j , and furthermore a backward recursive argument shows that r_k divides each remainder r_j (where $k \ge j \ge -1$). The first of these shows that $r_k = sa + tb$, while the second shows that r_k divides $a = r_{-1}$ and $b = r_0$. Since a and b are relatively prime, it follows that r_k must be equal to 1.

To complete the proof we only need to show that we can choose s, t such that s > 0. To see this, start by writing $1 = s^*a + t^*b$ for some integers s^*, t^* . If $s^* > 0$ we are done, but if not we can find some positive integer K such that $s = s^* + Kb$ is positive (write $-s^* = ub + v$ where $0 \le v < b$, so that $0 = ub + v + s^* < (u+1)v + s^*$). If we now take $t = t^* - Ka$ then it follows that sa + tb = 1.

EXAMPLE. Suppose that a = 77 and b = 52. Then we obtain the following sequence of long divisions:

In the notation of the display we have

$$r_{-1} = a = 77, r_0 = b = 52, r_1 = 25, r_2 = 2, r_3 = 1$$

 $q_1 = 1, q_2 = 2, q_3 = 12.$

We also have the recursive relation $r_{j-2} - r_{j-1}q_j = r_j$ for all $j \ge 1$, and this yields the following chain of identities:

$$25 = r_1 = 77 \cdot 1 + 52 \cdot (-1)$$

$$2 = r_2 = r_0 - q_2 r_1 = 52 - 2 \cdot (77 \cdot 1 + 52 \cdot (-1)) = 52 \cdot 3 + 77 \cdot (-2)$$

$$1 = r_3 = r_1 - q - 3r_2 = (77 \cdot 1 + 52 \cdot (-1)) - 12 \cdot (52 \cdot 3 + 77 \cdot (-2)) = 77 \cdot 25 + 52 \cdot (-37)$$

We can check the accuracy of these calculations by computing the products $77 \times 25 = 1925$ and $52 \times 37 = 1924$. Thus we have shown that $24 \times 77 \equiv 1$ (52) and also $37 \times 52 \equiv -1$ (77), which is equivalent to $1 \equiv -37 \times 52 \equiv 40 \cdot 52$ (77).

STILL MORE EXAMPLES

Here are some more examples.

Problem 6. Find all integers n such that n = 5p + 2 and n = 7q + 5 where p and q are integers.

SOLUTION. We need to find p such that $5p + 2 \equiv 5$ modulo 7, which is equivalent to $5p \equiv 3$ (7). To proceed, we need to find y such that $5y \equiv 1$ (7); we can do this easily because $5 \cdot 3 = 14 + 1$. Therefore we have $p \equiv 15p = 3 \cdot 5p \equiv 3 \cdot 3 \equiv 2$ (7) so that p = 7z + 2 for some z and n = 5(7z + 2) + 2 = 35z + 10 + 2 = 35z + 12.

Problem 7. Find all integers n such that 0 < n < 200 and n can be written as n = 11p + 6 and n = 17q + 8 where p and q are integers.

SOLUTION. We need to find p such that $11p+6 \equiv 8 \mod 17$, which is equivalent to $11p \equiv 2 \pmod{17}$. To proceed, we need to find y such that $11y \equiv 1 \pmod{17}$; we can do this easily because $11 \cdot -3 = -34 + 1 = (-2) \cdot 17 + 1$. Multiplying the congruence on the first line by -3, we find that

 $p \equiv -33p \equiv (-3) \cdot 11p \equiv (-3) \cdot 2 \equiv -6$

mod 17, so that p = 17w + 11 for some w. Substituting in this value, we obtain

$$n = 11(17w + 11) + 6 = 187w + 121 + 6 = 187w + 127$$

By construction $n \equiv 6$ (11) and the other congruence follows because $127 = (9 \cdot 17) + 8$. Since 187w + 127 is not between 0 and 200 if $w \neq 0$, it follows that n = 127 is the only solution.