6.C. The Chinese Remainder Theorem

We shall begin with the standard Long Division Property of the integers: Let a and b be positive integers with $b \geq 2$. Then there are unique nonnegative integers q (the quotient) and r (the remainder) such that

$$
a=b q+r
$$

where $0 \leq r<b$.
We may then state the Chinese Remainder Problem as follows:
Let $p, q \geq 2$ be relatively prime (no common divisors except ± 1), and let a and b be nonnegative integers. Find all positive integers n such that n leaves remainders of a and b after long division by p and q.

For example, we might take $p=3$ and $q=5$, with $a=2$ and $b=3$.

Congruences

The most efficient way of solving such problems involves the notion of congruence for integers.
Definition. Let $m \geq 2$ be an integer, and let u and v be arbitrary integers. Then u and v are said to be congruent modulo m, writteh $u \equiv v(m)$ if and only if $u-v$ is (evenly) divisible by m (with zero remainder). This concept has the following properties:
(1) If r is the remainder of u after long division by m, then $u \equiv r(m)$.
(2) If $0 \leq r_{1}<r_{2}<m$, then $r_{1} \not \equiv r_{2}(m)$.
(3) If $a \equiv b(m)$ then $b \equiv a(m)$.
(4) If $a \equiv b(m)$ and $b \equiv c(m)$, then $a \equiv c(m)$.
(5) If $a \equiv a^{\prime}(m)$ and $b \equiv b^{\prime}(m)$, then $a+b \equiv a^{\prime}+b^{\prime}(m)$ and $a b \equiv a^{\prime} b^{\prime}(m)$.
(6) If c is relatively prime to m, then there is a positive integer d such that $d c \equiv 1(m)$.

The last property is particularly important for the Chinese Remainder Problem, for it implies that we can find integers d and k such that $c d=1+k m$. For small values of m and c one can often find d and k by trial and error. For example, if $m=20$ and $c=7$, then we can take $d=3$. Similarly, if $m=7$ and $c=5$, then we can take $d=3$, and if $m=5$ and $c=7$, then we can take $d=4$. We shall begin by looking at examples of c, m where it is easy to find d, and at the end we shall discuss the general method for finding d in more complicated cases.

Simple examples

1. In the setting of the preceding paragraph, find d if $m=7$ and $c=6$, likewise if $m=6$ and $c=7$.

SOLUTION. We have $d=6$ in the first case and $d=7$ in the second (verify these claims). -
2. The example at the beginning of this document can be rewritten to ask for all integers n such that $n \equiv 2$ (3) and $n \equiv 3$ (5).
SOLUTION. We are interested in finding all integers of the form $3 p+2$ such that $3 p+2 \equiv 3$ (5). Subtracting 2 from each side we obtain the equivalent congruence $3 p \equiv 1$ (5), and $p=2$ is one
solution. More generally, every integer $p=5 k+2$ is a solution and this yields all solutions. Therefore the solutions to the original system are given by integers of the form

$$
n=3 \cdot(5 k+2)+2=15 k+8
$$

and conversely it is easy to verify that each integer of this form solves the original problem. Therefore we may write the solution in the form $n \equiv 8$ (15)..
3. Suppose we modify the example to add a third condition: Find all integers n such that $n \equiv 2(3), n \equiv 3(5)$, and $n \equiv 5(7)$.

SOLUTION. One begins by solving the problem with the first two conditions, which yields $n \equiv$ 8 (15), and proceeding to solve a problem involving the result of the first step plus the third condition $n \equiv 5(7)$. To complete the final step we need to find all solutions of the congruence $15 k+8 \equiv 5(7)$.

The congruence in the preceding sentence can be rewritten in the form $k+1 \equiv 5(7)$, and from this we see that $k \equiv 4(7)$ or $k=7 m+4$. Therefore the general solution has the form

$$
n=15 k+8=15(7 m+4)+8=105 m+68
$$

or equivalently $n \equiv 68$ (105). Obviously we can handle systems of four or more congruences similarly, provided that the numbers by which we divide are pairwise relatively prime.■
4. Find all integers n such that $n \equiv 7$ (8) and $n \equiv 3$ (9).

SOLUTION. We need to find all solutions to $8 p+7 \equiv 3$ (9). This reduces to $8 p \equiv-4 \equiv 5$ (9). Now $8 \cdot 8 \equiv 1(9)$, so the last congruence implies that $p \equiv 8 \cdot 8 p \equiv 8 \cdot 5 \equiv 4$ (9). Therefore $p=9 q+4$, so that

$$
n=8(9 q+4)+772 q+39
$$

or $n \equiv 39$ (72).■
5. Find all integers n such that $n \equiv 13$ (27) and $n \equiv 7$ (16).

SOLUTION. We need to find all solutions to $27 p+13 \equiv 7(16)$. This reduces to $27 p \equiv-6 \equiv 10(16)$, and we may rewrite this as $11 p \equiv 10(16)$. Now $11 \cdot 3=33 \equiv 1(16)$, so we have

$$
p \equiv 3 \cdot 11 p \equiv 30 \equiv 14(16)
$$

so that $n=27(16 q+14)+13=432 q+391$, or equivalently $n \equiv 391(432)$..

$$
\text { Solving } c d \equiv 1(m) \text { systematically }
$$

In the preceding examples we were fortunate enough to be able to solve the congruence problem by trial and error for suitable choices of c and m. Obviously we need something which is more reliable, particularly if we are given more complicated problems. Specifically, we need the following:

THEOREM. Suppose that a and b are relatively prime positive integers greater than 1. Then there exist integers s and t such that $s a+t b=1$. In fact, we can always find a pair of such integers for which s is positive.

Proof. The process of finding s and t is called the Euclidean algorithm; not surprisingly, it appears in Euclid's Elements. Let's suppose that $a>b$. Then by long division we may write $a=b q_{1}+r_{1}$
where $0<r_{1}<b$; we know that the remainder is positive because a and b are relatively prime. We now recursively define integers q_{i} and r_{i} as follows until we reach an integer k such that $r_{k+1}=0$:

```
\(b=r_{1} q_{2}+r_{2}\), where \(0<r_{2}<r_{1}\)
\(r_{1}=r_{2} q_{3}+r_{3}\), where \(0<r_{3}<r_{2}\)
\(r_{k-2}=r_{k-1} q_{k}+r_{k}, \quad\) where \(0<r_{k}<r_{k-1}\)
\(r_{k-1}=r_{k} q_{k+1}+0\)
```

In other words, r_{k} is the last positive remainder in the sequence. Let's define $r_{0}=b$ and $r_{-1}=a$ because that will allow us to add $a=b q-1=r_{1}$ at the top of this list and express all the equations with uniform notational conventions.

A recursive argument now shows that each remainder r_{j} (where $-1 \leq j \leq k$) can be written in the form $s_{j} a+t_{j} b$ for suitable integers s_{j}, t_{j}, and furthermore a backward recursive argument shows that r_{k} divides each remainder r_{j} (where $k \geq j \geq-1$). The first of these shows that $r_{k}=s a+t b$, while the second shows that r_{k} divides $a=r_{-1}$ and $b=r_{0}$. Since a and b are relatively prime, it follows that r_{k} must be equal to 1 .

To complete the proof we only need to show that we can choose s, t such that $s>0$. To see this, start by writing $1=s^{*} a+t^{*} b$ for some integers s^{*}, t^{*}. If $s^{*}>0$ we are done, but if not we can find some positive integer K such that $s=s^{*}+K b$ is positive (write $-s^{*}=u b+v$ where $0 \leq v<b$, so that $\left.0=u b+v+s^{*}<(u+1) v+s^{*}\right)$. If we now take $t=t^{*}-K a$ then it follows that $s a+t b=1$.

EXAMPLE. Suppose that $a=77$ and $b=52$. Then we obtain the following sequence of long divisions:

$$
\begin{aligned}
& 77=52 \cdot 1+25 \\
& 52=25 \cdot 2+2 \\
& 25=2 \cdot 12+1
\end{aligned}
$$

In the notation of the display we have

$$
\begin{gathered}
r_{-1}=a=77, \quad r_{0}=b=52, \quad r_{1}=25, \quad r_{2}=2, \quad r_{3}=1 \\
q_{1}=1, \quad q_{2}=2, \quad q_{3}=12
\end{gathered}
$$

We also have the recursive relation $r_{j-2}-r_{j-1} q_{j}=r_{j}$ for all $j \geq 1$, and this yields the following chain of identities:

$$
\begin{gathered}
25=r_{1}=77 \cdot 1+52 \cdot(-1) \\
2=r_{2}=r_{0}-q_{2} r_{1}=52-2 \cdot(77 \cdot 1+52 \cdot(-1))=52 \cdot 3+77 \cdot(-2) \\
1=r_{3}=r_{1}-q-3 r_{2}=(77 \cdot 1+52 \cdot(-1))-12 \cdot(52 \cdot 3+77 \cdot(-2))=77 \cdot 25+52 \cdot(-37)
\end{gathered}
$$

We can check the accuracy of these calculuations by computing the products $77 \times 25=1925$ and $52 \times 37=1924$. Thus we have shown that $24 \times 77 \equiv 1$ (52) and also $37 \times 52 \equiv-1(77)$, which is equivalent to $1 \equiv-37 \times 52 \equiv 40 \cdot 52$ (77). .

STILL MORE EXAMPLES

Here are some more examples.

Problem 6. Find all integers n such that $n=5 p+2$ and $n=7 q+5$ where p and q are integers.
SOLUTION. We need to find p such that $5 p+2 \equiv 5$ modulo 7 , which is equivalent to $5 p \equiv 3$ (7). To proceed, we need to find y such that $5 y \equiv 1$ (7); we can do this easily because $5 \cdot 3=14+1$. Therefore we have $p \equiv 15 p=3 \cdot 5 p \equiv 3 \cdot 3 \equiv 2(7)$ so that $p=7 z+2$ for some z and $n=$ $5(7 z+2)+2=35 z+10+2=35 z+12$. .

Problem 7. Find all integers n such that $0<n<200$ and n can be written as $n=11 p+6$ and $n=17 q+8$ where p and q are integers.

SOLUTION. We need to find p such that $11 p+6 \equiv 8$ modulo 17 , which is equivalent to $11 p \equiv 2(17)$. To proceed, we need to find y such that $11 y \equiv 1$ (17); we can do this easily because $11 \cdot-3=$ $-34+1=(-2) \cdot 17+1$. Multiplying the congruence on the first line by -3 , we find that

$$
p \equiv-33 p \equiv(-3) \cdot 11 p \equiv(-3) \cdot 2 \equiv-6
$$

$\bmod 17$, so that $p=17 w+11$ for some w. Substituting in this value, we obtain

$$
n=11(17 w+11)+6=187 w+121+6=187 w+127
$$

By construction $n \equiv 6$ (11) and the other congruence follows because $127=(9 \cdot 17)+8$. Since $187 w+127$ is not between 0 and 200 if $w \neq 0$, it follows that $n=127$ is the only solution. $■$

