
6.C. The Chinese Remainder Theorem

We shall begin with the standard Long Division Property of the integers: Let a and b be
positive integers with b ≥ 2. Then there are unique nonnegative integers q (the quotient) and r

(the remainder) such that
a = bq + r

where 0 ≤ r < b.

We may then state the Chinese Remainder Problem as follows:

Let p, q ≥ 2 be relatively prime (no common divisors except ± 1), and let a and b be nonnegative
integers. Find all positive integers n such that n leaves remainders of a and b after long division
by p and q.

For example, we might take p = 3 and q = 5, with a = 2 and b = 3.

Congruences

The most efficient way of solving such problems involves the notion of congruence for integers.

Definition. Let m ≥ 2 be an integer, and let u and v be arbitrary integers. Then u and v are
said to be congruent modulo m, writteh u ≡ v (m) if and only if u − v is (evenly) divisible by m

(with zero remainder). This concept has the following properties:

(1) If r is the remainder of u after long division by m, then u ≡ r (m).

(2) If 0 ≤ r1 < r2 < m, then r1 6≡ r2 (m).

(3) If a ≡ b (m) then b ≡ a (m).

(4) If a ≡ b (m) and b ≡ c (m), then a ≡ c (m).

(5) If a ≡ a′ (m) and b ≡ b′ (m), then a+ b ≡ a′ + b′ (m) and ab ≡ a′b′ (m).

(6) If c is relatively prime to m, then there is a positive integer d such that dc ≡ 1 (m).

The last property is particularly important for the Chinese Remainder Problem, for it implies
that we can find integers d and k such that cd = 1 + km. For small values of m and c one can
often find d and k by trial and error. For example, if m = 20 and c = 7, then we can take d = 3.
Similarly, if m = 7 and c = 5, then we can take d = 3, and if m = 5 and c = 7, then we can take
d = 4. We shall begin by looking at examples of c,m where it is easy to find d, and at the end we
shall discuss the general method for finding d in more complicated cases.

Simple examples

1. In the setting of the preceding paragraph, find d if m = 7 and c = 6, likewise if m = 6 and
c = 7.

SOLUTION. We have d = 6 in the first case and d = 7 in the second (verify these claims).

2. The example at the beginning of this document can be rewritten to ask for all integers n such
that n ≡ 2 (3) and n ≡ 3 (5).

SOLUTION. We are interested in finding all integers of the form 3p + 2 such that 3p + 2 ≡ 3 (5).
Subtracting 2 from each side we obtain the equivalent congruence 3p ≡ 1 (5), and p = 2 is one
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solution. More generally, every integer p = 5k + 2 is a solution and this yields all solutions.
Therefore the solutions to the original system are given by integers of the form

n = 3 · (5k + 2) + 2 = 15k + 8

and conversely it is easy to verify that each integer of this form solves the original problem. There-
fore we may write the solution in the form n ≡ 8 (15).

3. Suppose we modify the example to add a third condition: Find all integers n such that
n ≡ 2 (3), n ≡ 3 (5), and n ≡ 5 (7).

SOLUTION. One begins by solving the problem with the first two conditions, which yields n ≡

8 (15), and proceeding to solve a problem involving the result of the first step plus the third
condition n ≡ 5 (7). To complete the final step we need to find all solutions of the congruence
15k + 8 ≡ 5 (7).

The congruence in the preceding sentence can be rewritten in the form k+1 ≡ 5 (7), and from
this we see that k ≡ 4 (7) or k = 7m+ 4. Therefore the general solution has the form

n = 15k + 8 = 15(7m + 4) + 8 = 105m + 68

or equivalently n ≡ 68 (105). Obviously we can handle systems of four or more congruences
similarly, provided that the numbers by which we divide are pairwise relatively prime.

4. Find all integers n such that n ≡ 7 (8) and n ≡ 3 (9).

SOLUTION. We need to find all solutions to 8p + 7 ≡ 3 (9). This reduces to 8p ≡ −4 ≡ 5 (9).
Now 8 ·8 ≡ 1 (9), so the last congruence implies that p ≡ 8 ·8p ≡ 8 ·5 ≡ 4 (9). Therefore p = 9q+4,
so that

n = 8(9q + 4) + 7 72q + 39

or n ≡ 39 (72).

5. Find all integers n such that n ≡ 13 (27) and n ≡ 7 (16).

SOLUTION. We need to find all solutions to 27p+13 ≡ 7 (16). This reduces to 27p ≡ −6 ≡ 10 (16),
and we may rewrite this as 11p ≡ 10 (16). Now 11 · 3 = 33 ≡ 1 (16), so we have

p ≡ 3 · 11p ≡ 30 ≡ 14 (16)

so that n = 27(16q + 14) + 13 = 432q + 391, or equivalently n ≡ 391 (432).

Solving cd ≡ 1 (m) systematically

In the preceding examples we were fortunate enough to be able to solve the congruence problem
by trial and error for suitable choices of c and m. Obviously we need something which is more
reliable, particularly if we are given more complicated problems. Specifically, we need the following:

THEOREM. Suppose that a and b are relatively prime positive integers greater than 1. Then
there exist integers s and t such that sa+ tb = 1. In fact, we can always find a pair of such integers
for which s is positive.

Proof. The process of finding s and t is called the Euclidean algorithm; not surprisingly, it appears
in Euclid’s Elements. Let’s suppose that a > b. Then by long division we may write a = bq1 + r1
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where 0 < r1 < b; we know that the remainder is positive because a and b are relatively prime. We
now recursively define integers qi and ri as follows until we reach an integer k such that rk+1 = 0:

b = r1q2 + r2 , where 0 < r2 < r1
r1 = r2q3 + r3 , where 0 < r3 < r2
· · ·

rk−2 = rk−1qk + rk , where 0 < rk < rk−1

rk−1 = rkqk+1 + 0

In other words, rk is the last positive remainder in the sequence. Let’s define r0 = b and r−1 = a

because that will allow us to add a = bq−1 = r1 at the top of this list and express all the equations
with uniform notational conventions.

A recursive argument now shows that each remainder rj (where −1 ≤ j ≤ k) can be written in
the form sja+tjb for suitable integers sj , tj , and furthermore a backward recursive argument shows
that rk divides each remainder rj (where k ≥ j ≥ −1). The first of these shows that rk = sa+ tb,
while the second shows that rk divides a = r−1 and b = r0. Since a and b are relatively prime, it
follows that rk must be equal to 1.

To complete the proof we only need to show that we can choose s, t such that s > 0. To see
this, start by writing 1 = s∗a+ t∗b for some integers s∗, t∗. If s∗ > 0 we are done, but if not we can
find some positive integer K such that s = s∗+Kb is positive (write −s∗ = ub+v where 0 ≤ v < b,
so that 0 = ub+v+s∗ < (u+1)v+s∗). If we now take t = t∗−Ka then it follows that sa+ tb = 1.

EXAMPLE. Suppose that a = 77 and b = 52. Then we obtain the following sequence of long
divisions:

77 = 52 · 1 + 25
52 = 25 · 2 + 2
25 = 2 · 12 + 1

In the notation of the display we have

r−1 = a = 77, r0 = b = 52 , r1 = 25 , r2 = 2, r3 = 1

q1 = 1 , q2 = 2 , q3 = 12 .

We also have the recursive relation rj−2 − rj−1qj = rj for all j ≥ 1, and this yields the following
chain of identities:

25 = r1 = 77 · 1 + 52 · (−1)

2 = r2 = r0 − q2r1 = 52 − 2 · (77 · 1 + 52 · (−1)) = 52 · 3 + 77 · (−2)

1 = r3 = r1 − q−3r2 = (77 ·1 + 52 ·(−1)) − 12 ·(52 ·3 + 77 ·(−2)) = 77 ·25 + 52 ·(−37)

We can check the accuracy of these calculuations by computing the products 77 × 25 = 1925 and
52 × 37 = 1924. Thus we have shown that 24 × 77 ≡ 1 (52) and also 37 × 52 ≡ −1 (77), which is
equivalent to 1 ≡ −37× 52 ≡ 40 · 52 (77).

STILL MORE EXAMPLES

Here are some more examples.
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Problem 6. Find all integers n such that n = 5p+ 2 and n = 7q + 5 where p and q are integers.

SOLUTION. We need to find p such that 5p + 2 ≡ 5 modulo 7, which is equivalent to 5p ≡ 3 (7).
To proceed, we need to find y such that 5y ≡ 1 (7); we can do this easily because 5 · 3 = 14 + 1.
Therefore we have p ≡ 15p = 3 · 5p ≡ 3 · 3 ≡ 2 (7) so that p = 7z + 2 for some z and n =
5(7z + 2) + 2 = 35z + 10 + 2 = 35z + 12.

Problem 7. Find all integers n such that 0 < n < 200 and n can be written as n = 11p + 6 and
n = 17q + 8 where p and q are integers.

SOLUTION. We need to find p such that 11p+6 ≡ 8 modulo 17, which is equivalent to 11p ≡ 2 (17).
To proceed, we need to find y such that 11y ≡ 1 (17); we can do this easily because 11 · −3 =
−34 + 1 = (−2) · 17 + 1. Multiplying the congruence on the first line by −3, we find that

p ≡ −33p ≡ (−3) · 11p ≡ (−3) · 2 ≡ −6

mod 17, so that p = 17w + 11 for some w. Substituting in this value, we obtain

n = 11(17w + 11) + 6 = 187w + 121 + 6 = 187w + 127 .

By construction n ≡ 6 (11) and the other congruence follows because 127 = (9 · 17) + 8. Since
187w + 127 is not between 0 and 200 if w 6= 0, it follows that n = 127 is the only solution.
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