
8. Mathematics in the late Middle Ages 
 
 

(Burton, 7.1, 7.2; some material not in Burton) 
 

 
The transition from ancient to modern mathematics period began with the breakthroughs 
of Indian mathematicians and continued with the work of Arabic mathematics.  Both of 
the latter remained productive through much of the second half of this transitional period, 

which roughly covers the time from 1200 to 1600.  In the preceding unit we discussed 
the beginning of the second half of the transitional period, during which there was a 
revival of activity in Christian Western Europe, and we shall continue the narrative here.   

 
General remarks about late medieval and Renaissance mathematics 

 
Many histories of mathematics view the time after Fibonacci until the early sixteenth 
century as a period of decline and inactivity.  While the work during that period did not 
contain any advances at the level of Fibonacci’s work, there were some modest but 
important developments involving mathematics that took place during that time.   Many 
can be placed into the following two categories: 
 

1. Improvements in mathematical notation. 

2. Stronger ties to science, the arts and commerce. 

 
Popularization of base 10 arithmetic and other notational improvements 

 
Increased trade in the Mediterranean area was an early sign of recovery from the Dark 
Ages, and Italy was a center of this trade.  During the 11th and 12th century, several 
developments contributed substantially to increased trading activity; these include the 
Christian conquests discussed in the previous unit and the Crusades, which began at 
the end of the 11th century.  Fibonacci came from a merchant family, and commercial 
ventures brought him into contact with the mathematical activity in Islamic lands.  One 
clear reason for his interest in mathematics was its potential usefulness in handling the 
steadily more complicated counting and accounting problems generated by the 
increasingly active commercial trade of the time.   Business was moving from being a 

sequence of separate, relatively self – contained transactions to overlapping inward and 
outward flows of merchandise and money.  Well before the beginning of the 14th century, 
it became necessary to manage items like financial credit, debts, interests, and 
transaction records.   In particular, these needs led to the gradual adoption of  double 
entry bookkeeping , which kept records of where money was coming from and where it 
was going; fragmentary records indicate that such systems were already in use early in 
the 13th century, and by the middle of the 14th century they were very widely used.  The 
underlying logic of double entry bookkeeping is summarized in a simple equation: 
 

 Assets   =   Liabilities  +  Owner’s Equity.     
 

In other words, what a business owns must always equal ( = ) what it owes to its 

creditors plus ( + ) what it owes to the owner or owners.  An example is given on the 
next page. 



 
 

(Source:   http://www.banana.ch/accounting/eng/images/double_entry_01.png) 
 

The knowledge that Italian merchants required was not readily available from courses of 
study from the church or from the universities of that time.  This need for instruction led 
to the emergence of a new class of mathematicians, who provided instruction to the 
merchants and wrote texts from which they taught the requisite material.  There schools 
were called Abacus Schools, and the instructors were known as  Maestri  d’abbaco 
(Note:  Despite this name, the schools taught pen – and – paper computations using 

Hindu – Arabic numerals without  the use of a calculating device such as an abacus; 
some authors call these instructors abacists, but usually the latter term denotes those 
who favored computations with devices like an abacus and strongly opposed the 

methods taught in the abacus schools  —  in fact, the instructors at the Abacus Schools 
were from a rival group called algorists.).  As trade and commerce grew during the 14th 
through 16th century, similar classes of masters of mathematics came into being, and 
similar schools appeared in other European countries.  For example, this took place in 
Germany on a fairly extensive scale during the middle to late 15th century. 
 

Large numbers of such texts have been preserved, and by the early 14th century some 
of them (for example, the 1307 work, Tractatus algorismi, by Jacopo of Florence) had 
progressed significantly beyond Fibonacci in some respects.  Several of these Italian 
mathematicians of the 14th century were instrumental in teaching merchants the “new” 

Hindu – Arabic decimal place – value system and the algorithms for using it.  There was 
formidable opposition to the new numbering system and computational techniques, both 
in Italy and the rest of Europe; one substantive reason opposition was that the ten 

symbols for Hindu – Arabic numbers did not become standardized for some time, and 
this led to obvious problems with (mis)understanding the numbers they represented.  
However, the new methods, which were of course more efficient and convenient to use 



once they were mastered, eventually became the accepted standard, first in Italy and 
later throughout the rest of Europe. 
 

The Italians were thoroughly familiar with Arabic mathematics and its emphasis on 
algebraic methods.  Although their teaching focused on practical business problems they 
also studied various recreational problems, including examples in geometry, elementary 
number theory, the calendar, and astrology.  In connection with their instructional and 
recreational mathematics, in some cases they extended the Arabic methods by 
introducing abbreviations and symbolisms, developing new methods for dealing with 
complex algebraic problems and allowing the use of symbols for unknowns. Thus, unlike 
Arabic algebra, which was entirely rhetorical, the algebra of the Italians frequently used 
syncopated notation to varying degrees, and this became more widespread as the 14th 
century progressed.   
 

Another innovation was the extension of the Arabic techniques for solving quadratic 
equations to higher degree polynomials.  For example, a 1344 book by Maestro Dardi of 

Pisa extended al-Khwarizmi’s standard list of 6 types of quadratic equations to a list of 

198 equations of degree less than or equal to 4, and he gave a method for solving one 
type of cubic equation.  Unfortunately, as with several other works of this era, his 
Aliabraa – Argibra contains incorrect formulas along with its noteworthy advances; one 
particularly comprehensive and reliable work summary from the period was the Trattato 

di praticha d'arismetrica, by Maestro Benedetto of Florence (1429 – 1479). 
 

Here is an example of one problem from this era, which was formulated by Antonio de’ 

Mazzinghi (1353 – 1383), one of the most highly regarded mathematicians from the 

period:  Find two numbers such that multiplying one by the other yields 8 and the sum 

of their squares is 27. —  The solution begins by supposing that the first number is 
one number minus the root of some other number, while the second number equals one 
number minus the root of some other number. The problem leads to the equations  

 
for which the solution is given by 

 
Most of the standard textbook discussions of the Italian masters of mathematics and 
their work are extremely brief.  There are more extensive surveys of this period in 
Section 3 of the online article and pages 42 – 52 of the book cited below:  
 

http://www.melaracconto.org/algebra/algebra/storia/siti/The%20Art%20of%20Algebra%20by%20Kare
n%20H_%20Parshall.htm  

  

van der Waerden, B. L.  A history of algebra. From al-Khwārizmī to 
Emmy Noether. Springer-Verlag, Berlin, 1985. 

 

Here are online references for even more detailed accounts of the era (unfortunately, not 
in English but adequately translatable using standard online software): 
 

http://akira.ruc.dk/~jensh/Publications/2008_Ueber%20den%20italienischen%20Hintergrund.pdf 
 

http://php.math.unifi.it/archimede/archimede/fibonacci/catalogo/ulivi.php 

 



The mathematical theory of perspective drawing 

 
[ Note:  This material is not covered in Burton. ] 

 

As the cultural and commercial center of the late Middle Ages and early Renaissance, 
Italy was the source of many important new developments during that period.   In 

particular, an important change took place in painting around the year 1300.   Prior to 
that time the central objects of paintings were generally flat and more symbolic than real 
in appearance; emphasis was on depicting religious or spiritual truths rather than the 
real, physical world.  As society in Italy became more sophisticated, there was an 
increased interest in using art to depict a wider range of themes and to so in a manner 
that more accurately captured the image that the human eye actually sees, and recent 
(at the time) translations of Alhazen’s work on optics yielded scientific and mathematical 
principles for creating such paintings.   
 

The earlier concepts of art are clearly represented in a segment from the famous Bayeux 
Tapestry which is a graphic account of the Norman conquest of England in 1066.  In the 
segment depicted at the online site as http://hastings1066.com/bayeux23.shtml there are 
men eating at a table, and it looks as if the objects on the table are directly facing the 
viewer and ready to fall off the table’s surface.  In this and other segments of the 
tapestry one can also notice the flat appearance of nearly all objects.  None of this 
detracts from the artistic value of the tapestry and some of the distortion can be 
explained because this is a tapestry rather than a painting, but medieval paintings also 
have many of the same traits.  The following link contains a painting with a similar 
example involving tables whose tops appear as if they might be vertical. 
 

http://www.mcm.edu/academic/galileo/ars/arshtml/renart1.html 
 

And here is one more example titled Woman teaching geometry, which appears at the 
beginning of a medieval translation of Euclid’s Elements from around 1310. 

 

 
 

(Source:  http://en.wikipedia.org/wiki/Euclid's_Elements ) 
 

In this picture, one can also notice the flat appearance of nearly all the faces.   
 

The paintings of Giotto (Ambrogio Bondone, 1267 – 1337), especially when compared 

to those of his predecessor Giovanni Cimabue (originally Cenni di Pepo, 1240 – 1302), 



show the growing interest in visual accuracy quite convincingly, and other painters from 
the 14th and early 15th century followed this trend.  It is interesting to look at these 
paintings and see how the artists succeeded in showing things accurately much of the 
time but were far from perfect.  Eventually artists with particularly good backgrounds in 
Euclidean geometry began a systematic study of the whole subject and developed a 
mathematically precise theory of perspective drawing.  
 

The basic idea behind the theory of perspective is illustrated below.  Assume that the 

eye E is at some point on the positive z – axis, the canvas is the xy – plane, and the 

object P to be included in the painting is at the point P which is on the opposite side of 

the xy  – plane as the eye E.  Then the image point Q on the canvas will be the point 

where the line EP meets the xy – plane.    
 

 
 

A detailed analysis of this geometrically defined mapping yields numerous facts that are 
logical consequences of the construction and Euclidean geometry.   For example, one 
immediately has the following conclusion.  
 

PROPOSITION.  If P, P′′′′ and P′′′′′′′′ are collinear points on the opposite side of E and Q, Q′′′′ 
and Q′′′′′′′′ are their perspective images, then Q, Q′′′′ and Q′′′′′′′′ are also collinear.  
 

Proof.  Let L be the line containing the three points.  Then there is a plane A containing 

L and the point E; the three points Q, Q′′′′ and Q′′′′′′′′ all lie on the intersection of A with the 

xy – plane.  Since the intersection of two planes is a line it follows that the three points 
must lie on this line.  
 

Further analysis yields the following important observation; a proof of this statement is 
described in (8.D). 
 

VANISHING POINT PROPERTY.   If  L, M and N are mutually parallel lines, then their 

perspective images pass through a single point on the x y – plane.  This point is known 

as the vanishing point.   The set of all vamishing points on all lines is the x – axis.   
 

Here is one picture to illustrate the Vanishing Point Property:  
 



 
 

 (Source: http://www.collegeahuntsic.qc.ca/Pagesdept/Hist_geo/Atelier/Parcours/Moderne/perspective.html) 
 

And here is another depicting two different families of mutually parallel lines:  
 

 
 

It is enlightening to examine some paintings from the 14th and 15th centuries to see how 
well they conform to the rules for perspective drawing.  In particular, the site  
 

http://www.webexhibits.org/sciartperspective/perspective1.html 
 

analyzes Giotto’s painting Jesus Before the Caïf (1305) and shows that the rules of 
perspective are followed very accurately in some parts of the painting but less accurately 
in others. 
 

The first artist to investigate the geometric theory of perspective systematically was F. 

Brunelleschi (1377 – 1446), and the first text on the theory was Della Pittura, which was 

written by L. B. Alberti (1404 – 1472).   The influence of geometric perspective theory on 
paintings during the fifteenth century is obvious upon examining works of that period.  
The most mathematical of all the works on perspective written by the Italian 
Renaissance artists in the middle of the 15th century was On perspective for painting 

(De prospectiva pingendi) by P. della Francesca (1412 – 1492).   Not surprisingly, there 
were many further books written on the subject at the time, of which we shall only 
mention the Treatise on Mensuration with the Compass and Ruler in Lines, Planes, and 

Whole Bodies, which was written by Albrecht Dürer (1471 – 1528) in 1525.  
 

Here are additional online references for the theory of perspective with a few examples: 
 

http://mathforum.org/sum95/math_and/perspective/perspect.html 
 

http://www.math.utah.edu/~treiberg/Perspect/Perspect.htm 
 

http://www.dartmouth.edu/~matc/math5.geometry/unit11/unit11.html 
 



Here is a link to a perspective graphic that is animated:  
 

http://gaetan.bugeaud.free.fr/pcent.htm 
 

Of course, one can also use the theory of perspective to determine precisely how much 

smaller the image of an object becomes as it recedes from the x y – plane, and more 
generally one can use algebraic and geometric methods to obtain fairly complete 
quantitative information about the perspective image of an object.  Such questions can 
be answered very systematically and efficiently using computers, and most of the time (if 

not always) the 3 – dimensional graphic images on computer screens are essentially 
determined by applying the rules for perspective drawing explicitly. 

 
The consolidation of trigonometry 

 
Although there is no specific date when the Middle Ages ended and the Renaissance 
began, the transition is generally marked by three events during the second half of the 
fifteenth century.   
 

1. The invention of the printing press with movable type in 1452 by 

Johannes Gutenberg (c. 1400 – 1468).   
 

2. The end of the Byzantine Empire with the Ottoman (Turkish) 

conquest of Constantinople in 1453 by Sultan Mehmet    I I the 

Conqueror (1423 – 1481; reigned 1444 – 1446 and 1451 – 

1481). 
 

3. The European (re)discovery of America in 1492 by Christopher 

Columbus (1451 – 1506).  
 

One could also add the end of the conquest of Granada and expulsion of the Moors from 

Spain in 1492, and for our purposes this is particularly significant because of the Arabic 
influences on the history of mathematics.    The level of mathematical and other scientific 
activities in such cultures had been declining more or less gradually ever since the 12th 
century.  Although there were still a few noteworthy mathematical contributors during the 
15th century, there were virtually none afterwards.  
 

Following the Turkish conquest of Constantinople and other Greek states in the area, 
many Greek scholars brought manuscripts of ancient Greek writers to Western Europe.   
These manuscripts led to more accurate and informed translations in many cases.  
Activity in this direction continued for about a century, culminating in the translations of 

F. Commandino (1509 – 1575).  Although the impact of the movable type printing press 
for mathematics was not so immediate, it did lead to greatly increased communications 
among scholars and eventually to wider circulation of new ideas in mathematics; a few 
early and especially important examples of printed mathematical treatises from the 15th 
and 16th centuries will be mentioned later in this unit.  
 

New translations played a role in one significant mathematical development during the 
second half of the 15th century; namely, the emergence of trigonometry as a subject in 
its own right.  Ever since Hellenistic times, trigonometry had been regarded by Greek, 
Indian and Arabic scientists mainly as a mathematical adjunct to observational 
astronomy.  However, as trigonometry expanded in content and found increasingly many 
applications to other subjects such as navigation, surveying, and military engineering, it 



became clear that the subject could no longer be viewed in this fashion.   We have 
already noted that some non – Western mathematicians like Nasireddin and Bhaskara 
had taken steps towards recognizing that trigonometry was no longer subservient to 
observational astronomy. 
 

The separation of these subjects was made very explicit in the work of Johann Müller of 

Königsberg – in – Franconia (1436 – 1476), who is better known as Regiomontanus, 

which is a literal Latin translation of Königsberg (Note:  Königsberg – in – Franconia is 
a small town in the northwest corner of the present German state of Bavaria, close to 
Bamberg on the map  http://www.mapzones.com/citymap/germany/bavaria/bavaria.jpg, 
and NOT the more famous East Prussian city on the Baltic Sea which is now called 
Kaliningrad and lies in a small enclave of Russia sandwiched between Poland and 
Lithuania; see  http://www.inkaliningrad.com/english/wp-content/uploads/2008/03/map-

kaliningrad.JPG for the location of Kaliningrad).  Just like many of his contemporaries 
known as “Renaissance men,” he had extremely broad interests and abilities.  
Regiomontanus made new translations of various classical works, and in his book De 
Triangulis (On Triangles) he organized virtually everything that was known in plane and 
spherical trigonometry at the time, from the classical Greek and Arabic results to more 
recent discoveries.  In particular, this work systematically develops topics such as the 
determination of all measurements of a triangle from the usual sorts of partial data (side 

– angle – side, etc.) and states the Law of Sines explicitly.  We have already mentioned 
the 13th century work of Nasireddin in this direction; Regiomontanus’ treatment fell short 
of Nasireddin’s in some respects, but it recognized plane trigonometry somewhat more 
explicitly, and it had a major impact on the development of trigonometry and its ties to 
astronomy and algebra, partly because it was completed at the right time and in the right 
place. 
 

In another work, Tabulæ directionum, Regiomontanus gives extensive trigonometric 
tables and introduces the tangent function.  To provide an idea of the accuracy of his 

results, we note that his computations essentially give 57.29796 as the tangent of 89
o 

and the correct value to five decimal places is 57.28896.  
 

Fifty years ago subjects like solid geometry and spherical trigonometry were standard 
parts of the high school mathematics curriculum, but since this is no longer the case we 
shall include some online background references for spherical geometry and basic 
spherical trigonometry here:  

 

http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/node5.html 
 

http://mathworld.wolfram.com/SphericalTrigonometry.html 
 

http://star-www.st-and.ac.uk/~fv/webnotes/chapter2.htm 
 

There is one other contribution by Regiomontanus that we shall mention because it 
foreshadows some of the major revolutions in scientific thought during the 16th century.  
We have already noted that there are exactly three ways of decomposing the plane into 
solid regular polygonal regions; namely, one can do this with regular triangles, squares 
or hexagons but not with any other sorts of regular polygons.  One can pose a similar 

question for 3 – dimensional space.  There is of course the obvious decomposition into 
cubes, and one can ask if there are any others.  The writings of Aristotle (in Posterior 
Analytics) contain an assertion that this can be done with regular tetrahedra, and 
various scholars spent a great deal of time and effort in attempts to describe such 
decompositions.  However, it turns out that such decompositions cannot exist, and 
Regiomontanus is credited with this discovery.   Further information and a derivation 



appear in the supplementary file (8.B).   Certainly this discovery was not as revolutionary 

a scientific advance as the later work of N. Copernicus (1473 – 1543) in astronomy, but 
it is an earlier example of Renaissance scientists’ willingness and ability to question 
established scientific ideas and, in some cases, to correct them (in this connection it is 
worthwhile to note that Regiomontanus firmly believed in the Ptolemaic view of the 
universe).  This leads directly to the next topic: 

 
New directions in scientific thought 

 
Not surprisingly, the rediscovery of ancient learning during the late Middle Ages and the 
revival of intellectual activity led to questions about how it should be carried forward.  On 
one side there was interest in using the work of the ancient Greeks to study religious and 
philosophical issues (this was the theme of scholasticism, which dominated medieval 
thought from the 12th through the 15th centuries).  Eventually some of these efforts 
moved in directions which seem quite bizarre by today’s standards (for example, 
sustained attempts to discover properties of angels using logical deduction; however, 
despite its frequent repetition there is no evidence that scholars actually debated 
about the number of angels who could dance on the point of a needle).  However, 
other directions of inquiry were important steps in the evolution of the modern scientific 
method, building upon the earlier fundamental work of Alhazen.  In a closely related 
vein, there was also interest in putting this knowledge to practical use.   Eventually all of 
these viewpoints found a place in late medieval and Renaissance learning, but the 
balance was weighted more towards observation and the practical considerations than it 
had been in Greek culture.  One clear manifestation of this in the sciences was the 
emphasis on systematic experimentation and finding clear, relatively simple explanations 
for natural phenomena.   Mathematical knowledge during the late Middle Ages and 
Renaissance expanded in response to these increased practical and scientific needs.   
In a different direction, the writings of Nicholas of Cusa (or Kues, 1401 – 1464) 
proposed alternatives to Greek natural philosophy and scholasticism which strongly 
influenced later scientists including Copernicus, Galileo and Kepler.  More will be said 
about his contributions later when we discuss progress which led to the development of 
calculus. 
 

Note:   Nicholas of Cusa’s legacy is really extraordinary; although his methods were 
often unscientific, many of his bold and unconventional conclusions (for example, the 
earth is not the center of the universe and it is not at rest, while other celestial bodies are 
not perfectly spherical and do not move in perfectly circular orbits) were shown to be 
correct one or two centuries later.   Furthermore, his willingness to legitimize the concept 
of infinity went beyond earlier views, and it foreshadowed many future developments.   

 
Advances in mathematical notation 

 
We have already noted the introduction of the Hindu – Arabic numeration system and 
some progress towards creating more concise ways of putting mathematical material 
into written form by successors to Fibonacci.  Although some abbreviations and symbols 

had been introduced, only a few abbreviations of Italian words (for example, cos for 

cosa = unknown) had come anywhere close to being standard notation.  However, 
during the 15th century mathematicians had begun to devise some of the symbols that 
we use today.  The next page has a few examples beyond those already mentioned.  



 
 

 

Symbolism 
 

 

Year 
 

 

Developer 

 

Fraction bar for 
numerator over 

denominator 

 
c. 1200 

 

 

Al-Hassar (12
th

 century) 

 
    Fibonacci (in  Liber abaci) 

 

Juxtaposition for 
multiplication 

 

15 

th 
century 

 
1544 

 

 

Al-Qalasadi (1412  – 1486) 

 
    M. Stifel (1487  – 1567) 

 

Superscripts for 
exponents 

 

 

1484 
 

N. Chuquet (1445  – 1488) 

 

+   and   – 
 

1489 
 

J. Widman (1462  – 1498) 
 

 

√√√√  (radical sign) 
 

1525 
 

C. Rudolff (1499  – 1545)  
 

 

= 

  

1557 
 

 

R. Recorde (1510 – 1558) 

  

[Note:  Existing information about Abu Bakr Muhammad ‘Abdallah’ Ayyash al-Ḥaṣṣâr is 
limited; a few remarks are contained in  http://en.wikipedia.org/wiki/Abu_Bakr_al-Hassar 

and  Al Hassar and fractions.pptx .] 
 

Several other standard symbols date back to the 17th century and will be mentioned later 
in the notes when we cover that period (Unit 11).  The following online sites contain more 
comprehensive information about the development of mathematical symbols: 
 

http://www.unisanet.unisa.edu.au/07305/symbols.htm 
 

http://jeff560.tripod.com/mathsym.html 

 
A few additional comments about Chuquet and his notational innovations deserve to be 

added.  Namely, he introduced symbolism for the 0th power and also allowed the use of 
negative numbers as exponents.  He also expanded upon the terminology for large 
numbers which apparently existed at the time (million, billion, trillion) to the next level 
with the concepts of quadrillion, quintillion, and so on; this nomenclature is often known 
as the Chuquet system.  It differs from current American usage in that each number in 
Chuquet’s system was one million times the previous one (as in some European 
languages for which a billion equals a million million, rather than a thousand million as in 
the U.S.).  Chuquet’s known work, Triparty en la science des nombres,  was the first 
algebra book in French.  In many respects (for example, the exponential notation) 
Chuquet was far ahead of his time, but his insights went largely unrecognized until the 
manuscript was rediscovered in the 1870s. 

 



Definitive mathematical references in print 

 
One of the most prominent Italian teacher – mathematicians from the late 15th and early 

16th centuries was  L. Pacioli (1445 – 1517), who in 1494 published a summary of 
known mathematics at the time in his book, Summa de arithmetica, geometria, 
proportioni et proportionalita (1494), designed for schools in Northern Italy.  This 
encyclopedic book had significant defects, but it circulated widely and provided a basis 
for the major advances in mathematics during the early 15th century, and it is noteworthy 
for the degree to which it introduced shorthand notation for standard mathematical 

objects and operations; there are a few comments about this book on pages 316 – 317 
of Burton.   Pacioli’s book also had a particularly strong impact because it contained a 
lengthy, detailed summary of double entry bookkeeping which was regarded as definitive 
for a long time.   
 

Another financially related item in Pacioli’s book is the often used  Rule of 72  for 
estimating the amount of time in which an investment’s value will double; more precisely, 

if the annual percentage rate of interest is  R  per cent and the interest is compounded at 

least annually, then it will take about 72/R  years for the investment’s double in value.   
Pacioli does not explain or derive this rule, but the underlying mathematics is described 

in  http://math.ucr.edu/~res/math153-2019/compounding.pdf; the significance of 72 is that 

it is divisible by many small integers and is close to 100 times the natural logarithm of 2.   
The article http://en.wikipedia.org/wiki/Rule_of_72 contains additional information. 
 

The Summa was only one of Pacioli’s written works, which include an unpublished 
manuscript on recreational problems, geometric problems and proverbs. The latter 
frequently refers to Leonardo da Vinci, a close lifelong associate of Pacioli who worked 
with him on this venture.   
  

Many books on such mathematical topics were published beginning in the late 15th 
century and continuing through the 16th century.  In the German school, perhaps the 

best known author was A.  Riese (1492 – 1559), whose book Coss was published in 
1525; this book uses decimal fractions and modern notation for roots.  One indication of 
the book’s impact is that the phrase “according to Adam Riese” is still a widely used 
German idiomatic expression for absolute mathematical reliability.  Other examples 

include books by Stifel, Rudolff, Widman and J. Scheubel (1494 – 1570) in German, E. 

de la Roche (c. 1470 – c. 1530) in French, and Recorde, C. Turnstall (1474 – 1559) and 

J. Dee (1527 – 1608) in English.  Since Scheubel is not in the MacTutor list, here is an 
online reference for a biographical sketch (it is translatable using free online software):  
 

http://de.wikipedia.org/wiki/Johann_Scheubel 

 
Mathematical mapmaking 

 
[ Note:  This material is not covered in Burton. ] 

 

Strictly speaking, this material belongs in a discussion of 16th century mathematics, but 
we are including with 15th century advances because of its close ties to trigonometry. 
 

With the increase of long distance maritime activity throughout the 15th century, there 

was a correspondingly greater need for accurate and user – friendly maps.  One of the 

first persons to study such problems in depth was P. Nunes (noo – nesh, 1502 – 1578).  



He worked in many areas of science, with his main contributions to the theory of 
mapmaking in his 1537 book, Tratado da sphera (Treatise on the sphere),  and he is 
known for discovering a spherical curve called the rhumb line or loxodrome, a spiral 
curve ending at one of the poles which moves in a steady directional course (for 

example, constantly in the north – northwest direction).  Some aspects of Nunes’ work 
were ahead of their time; further information on these and other contributions are given 
in the online article http://en.wikipedia.org/wiki/Pedro_Nunes.   Here is a reference for the 
loxodrome curve; further information also appears in supplementary file (8.A): 
 

http://en.wikipedia.org/wiki/Loxodrome 
 

Probably the best known mapmaker from this period was Gerardus Mercator (1512 – 
1592; this name is latinized from Gheert Cremer) after whom the familiar Mercator map 
projection is named.  This projection succeeded in solving several key problems that 
Nunes studied without success.   
 

Here are several important features of the Mercator projection: 
 

1. Latitudes and longitudes are represented by horizontal and vertical 
lines. 

2. Loxodromes are represented by oblique lines. 

3. The map projection preserves the angles at which curves intersect. 

4. Regions far from the equator are severely distorted. 

5. To compensate for incorrect spacing between meridians, the spacing 
of latitudes towards the poles is increased. 

6. The projection is good for determining the compass direction between 
two points, but not at all accurate for estimating distances traveled or 
comparing areas of land masses (despite what the map below 
suggests, Australia is more than 3½ times as large of Greenland!). 

 

This is a typical example of a Mercator projection map: 
 

 
 

(Source:  http://www.uwsp.edu/geo/projects/geoweb/participants/Dutch/FieldMethods/UTMSystem.htm) 



 
There is a detailed discussion of this map projection in the online file 

 

http://en.wikipedia.org/wiki/Mercator_projection 
 

which gives the following formulas for finding the  x –  and  y –  coordinates in the 

Mercator projection plane from the latitude ϕϕϕϕ  and longitude λλλλ    (where  λλλλ0  is the longitude 
at the center of map): 
 

 
 

The finishing touches to the mathematics of the Mercator projection were completed by 

E. Wright (c. 1558 – 1615), T. Harriott (1560 – 1621), and H. Bond (c. 1600 – 1678); 
we shall say more about Harriott’s highly significant contributions later.    Numerous 
other  map projections have appeared since Mercator’s, with wide ranges of objectives 
such as minimizing area distortions and providing convenient frameworks for finding the 
shortest paths (great circles) from one point on the earth to another (recall that a  great 
circle  on a sphere is a circle whose center is also the center of the sphere).   
 

 
 

(Source:  http://earthquake.usgs.gov/learn/glossary/?term=great%20circle)  
 

For example, polar projection maps give much better ways to approximate great circles 
than maps like the Mercator projection. 

 

 
 

(Source:  https://www.winwaed.com/blog/2010/01/11/polar-maps-and-projections-part-1-overview/) 
 



Final remarks on mapmaking 

 
In the 18th century J. H. Lambert (1728 – 1777) studied problems of mapmaking in 
considerable detail.  Most significantly, his book  Notes and Comments on the 
Composition of Terrestrial and Celestial Maps  introduced several new or improved 
map projections which have been used extensively ever since.   
 
Everyday experience suggests that we cannot flatten out a piece of a sphere so that it 
fits onto a plane without any distortion of distances or angle measurements, and one 
way of reaching this conclusion arises from the fact that the angle sum of a spherical 
triangle is always greater than 180 degrees (in contrast, one obviously can do this with a 
piece of a cylinder).  However, a full proof of this was not given until the 19th century 
work of C. F. Gauss on the geometry of curved surfaces. 

 
Many elementary aspects of mapmaking theory are covered from a mathematical 
viewpoint in the following undergraduate level book:  
 

T. G. Freeman, Portraits of the Earth: A Mathematician Looks at Maps.   
American Mathematical Society, Providence RI, 2002.  

 
Addenda to this unit 

 
There are four separate items.  The first document (8.A) discusses loxodromic curves in 
more detail, the second (8.B) sketches a proof that there is no regular decomposition of 

3 – space with regular tetrahedra, the third (8.C) lists some websites with interactive 3 – 
dimensional graphics , and the fourth (8.D) contains more information on the concept of 
vanishing points in perspective drawing.   
 


