
11. Precalculus mathematics in the seventeenth century 
 
 

(Burton, 8.1 – 8.2) 
 
 
During the past few decades the term precalculus has become a fairly standard term 
to describe several loosely related topics that are studied before calculus.  These include 
some topics from algebra and coordinate (analytic) geometry, the basics of plane 
trigonometry, and standard material on exponential and logarithmic functions.  By the 
middle of the seventeenth century much of this material was close to its present form.  
We shall discuss each area separately. 
 
 

Standardization of algebra 
 
 

Viète had taken the crucial steps in creating systematic symbolic notation for algebra in 
the late 16th century.  However, several improvements were made during the early 17th 
century, particularly by R. Descartes (1596 – 1650).   Here are some specific examples:   
 

1. The current superscript notation x 
n
 for powers of numbers;  Chuquet 

had used superscripts for exponents in the 15th century but his notation 
did not include the variable or constant x being exponentiated, and Viète 
used words to denote power operations.  Strictly speaking, Descartes 
only used this notation when powers were nonnegative integers, but by 
the end of the century mathematicians used the notation freely for 
arbitrary real values of n; two individuals whose work promoted such 
extension of usage were John Wallis (1616 – 1703) and Isaac Newton 
(1643 – 1727).    

 

2. A shift from Viète’s convention — namely, vowels represent unknowns 
and consonants represent known quantities — to the usual modern 
practice of using letters near the end of the alphabet to denote unknowns 
and letters near the beginning of the alphabet for known quantities; 
whenever we see an equation a x   =    b today we normally assume 
that we are supposed to solve for x in terms of a and b. 

 

3. Introduction of the term  “imaginary roots”  for complex, but not real, 
solutions to polynomial equations; the reasoning behind the term was that 
one could imagine such expressions as roots even though they do not 
correspond to any real quantity.  If one interprets “real” in a very strict 
mathematical sense this statement is correct, but if one thinks of “real” in 
a less formal sense this view can be disputed on two grounds.  First, one 
can ask how “real” a real number is, and perhaps even more important, 
complex numbers do arise naturally in many physical contexts.  As noted 
in supplement (9.A), the physical concept of impedance in an 
alternating current electrical circuit is naturally measured by complex 
numbers, and there is further information in the previously cited online file 
http://math.ucr.edu/~res/math153-2019/impedance.pdf  and its continuation 
in http://math.ucr.edu/~res/math153-2019/impedance2.pdf.    



Numerous other mathematical writers also made significant contributions during this 
period, particularly T. Harriot (1560 – 1621), whom we mentioned earlier, A. Girard 
(1595 – 1632), and W. Oughtred (1574 – 1660).  Although Harriot made important 
advances in the theory of equations and notation simplification, his impact was 
diminished because his writings were first published several years after his death and 
were not well edited.  He introduced a dot (but not a raised one) to denote multiplication; 
there is some disagreement whether this was meant as a symbol of operation or merely 
separating terms, but evidence for the former is substantial (in any case Leibniz did use 
such terminology specifically as an operation).  More important, the standard inequality 
symbols   <   and    >   first appear in the published version of Harriot’s work, Artis 
Analyticæ Praxis ad Æquationes Algebraicas Resolvendas (The Analytical Arts Applied 
to Solving Algebraic Equations), which was published in 1631.  Substantial evidence 
indicates that Harriot himself did not introduce these symbols and they were inserted by 
the editors who published his work posthumously.  Girard’s numerous contributions 
include the modern terminology for the six basic trigonometric functions we use today 
and further clarification of the notion of fractional powers.   Oughtred introduced the so – 

called St. Andrew’s Cross  ×  for multiplication, and he also introduced the frequently 
used double colon symbol (::) for proportions or verbal analogies.  Both appear in his 
work Clavis Mathematicæ, composed about 1628 and published in 1631.  In addition, 
Oughtred adopted a long list of other notational conventions, and a list of them is given 
in the following wide – ranging and highly informative article on mathematical notation: 
 

https://www.stephenwolfram.com/publications/mathematical-notation-past-future/ 
 

Finally, we note the obelus sign (÷) was first used as a division symbol by J. Rahn 

(1622 – 1676) in 1659.   
 
 

Trigonometry 
 

 

Viète’s work on trigonometry advanced the subject well beyond the high level it had 
reached in the 15th century work of Regiomontanus, and in particular Viète used all six of 
the standard trigonometric functions explicitly.  We have already mentioned that the 
modern terminology for such functions was introduced by Girard, and his writings also 
contain the basic formula for the area of a spherical triangle (which is proportional to the 
excess of the sum of its vertex angle measurements over 180 degrees).  Additional 

information on Girard’s area formula appears in Section V.1 of the following online 
document: 
 

http://math.ucr.edu/~res/math133-2018/geometrynotes5a.f13.pdf   
 

A more specific reference is Theorem 3 on pages 230 – 231 of the cited notes. 
 
 

Logarithms 

 
We have already noted that trigonometric identities such as  
 

cos a cos b    =    ½ [ cos(a – b)   +   cos(a + b) ] 
 

which relate sums and products of trigonometric functions, are potentially useful for 
converting enormously time – consuming multiplicative calculations into relatively easy 



additive ones.  Such methods are examples of a concept known as prosthaphaeresis 
(from the Greek:   prosthesi  –  addition  and  afairo  – subtraction).    During the late 
16th century several mathematicians and astronomers — for example, Tycho Brahe 
(1546 – 1601)  — recognized the usefulness of such identities for reducing the amount 
of effort needed to carry out their computations.   The development of logarithms was 
essentially a formalization of this procedure that eliminated the need to use trigonometry 
as an intermediary. 
 

Towards the end of the 16th century, work on logarithms began in independent work of J. 
Napier (1550 – 1617) and J. Bürgi (1552 – 1632).  However, Napier published his 
findings much earlier, and Bürgi did not do so until Napier’s work had become known 
and accepted by the scientific community.  Napier’s definitions and methods differ 
greatly from those in use today; considerable information on them appears on pages 
352 – 355 of Burton (also see page 361), so we shall merely state his definition here:  If  
 

LN )101(10 77   
 

then  L  is defined to be the Napier logarithm of  N  (the term logarithm is also due to 
Napier from the Greek:   logos   –   ratio and arithmos  –  number).  Note that the 
Napier logarithm L  is a decreasing function of  N  while in the modern definition for 
logarithms the latter is an increasing function.   These logarithms convert products to 
sums, for if 
  

LN )101(10 77     MP )101(10 77   
 

then we have  
 

 MLPN  )101(1010 777  
 

Napier’s work had a very strong, immediate, and near universal impact on mathematical 
computations.   One example was the invention of the slide rule by Oughtred in the 
early 17th century.  This simple mechanical (analog) calculating device was an 
indispensable tool for scientists and engineers until the invention of electronic pocket 
calculators around 1970 (for the latter see https://en.wikipedia.org/wiki/Calculator).  The 
first slide rule was circular, but ultimately the ruler design became the most popular 
version.  
 

 
 

(Source:  http://tinas-sliderules.me.uk/Slide%20Rules/Alro%20Nmmi.JPG ) 



 

 
 

(Source:  http://www.sliderule.ca/fa154f.jpg) 
 

The site  https://www.youtube.com/watch?v=xYhOoYf_XT0  has a video with instructions 
for using a slide rule, and the article  https://en.wikipedia.org/wiki/Slide_rule  contains 
further information on this topic.  
 

The switch to common (base 10) logarithms came from discussions between Napier and 
H. Briggs (1561 – 1631).  Briggs carried out the work needed to construct new tables 
and completed it seven years after Napier’s death.   Typical computational examples for 
base 10 logarithms are given in  http://math.ucr.edu/~res/math153-2019/log-examples.pdf.  

 
Coordinate (analytic) geometry 

 
As long as algebra and geometry proceeded 
along separate paths, their progress was slow 
and their applications limited.  But when these 
two sciences joined company, they drew from 
each other fresh vitality, and thenceforward 
marched on at a rapid pace towards perfection. 
 

J. – L. Lagrange (1736 – 1813) 
 
We have already noted that the representation of points by numerical coordinates had 
appeared in some earlier work, implicitly in the writings of Apollonius, and more firmly in 
the (previously mentioned) 14th century writings of Oresme and earlier writings of Roger 
Bacon (c. 1214 – 1294) on plotting locations on maps using latitude and longitude.    
Oresme’s ideas circulated widely during the 16th century, and in particular they are 
present in the work of Galileo Galilei (1564 – 1642).  We shall comment on some 
mathematical aspects of his work that illustrated the need for something like coordinate 
geometry.  All of these are related to Galileo’s monumental discovery that an object 
falling to the ground without resistance will do so with uniformly accelerated motion.  
This concept had been discussed since the late Middle Ages long before its practical 
significance was understood.    One basic consequence of this uniform acceleration 
principle was that the motion of a projectile fired at some upward angle is a parabola 
(neglecting air resistance), showing that these curves — which were originally 
introduced because the Greeks thought they were interesting mathematically — had 
important practical applications. 
   

Galileo was interested in a variety of questions concerning curves and their properties.  
One particular curve that attracted his interest was the  cycloid  describing the motion of 
a point on a rolling wheel, which had been introduced by Nicholas of Cusa (1401 – 
1464, mentioned earlier in Unit 8).  There is an animated version of this curve in the 
reference http://mathworld.wolfram.com/Cycloid.html. 
 



 
x ( t )   =    t   –   sin t   
y ( t )     =    1  –   cos t 

 

Galileo was also interested in finding a curve that is isochronic; i.e., a curve such that, 
from any point, the object dropped will take the same amount of time to reach the 
bottom.  He thought such a curve was given by a segment of a circle, but somewhat 
ironically it turns out that the cycloid is an isochronic curve.  A proof of this was given by 
C. Huygens (1629 – 1695).   Another illustration of the urgent need for coordinate 
geometry was Galileo’s attempt to study the shape of a hanging chain, where he 
incorrectly concluded that it defined a parabola rather than a  catenary  (the graph of the 
hyperbolic cosine function).   We shall conclude this discussion by repeating its purpose; 
namely, to point out that there was a serious need for better ways of analyzing 
geometric problems, particularly many that arose from physics. 
 

The two most prominent names in the development of analytic geometry are R. 
Descartes and P. Fermat, who worked independently of each other although each of 
them eventually had at least some knowledge of the other’s work.  The following well 
known comment by Isaac Newton on his own work, from a letter to R. Hooke (1635 – 
1703), applies equally well to the work of both Descartes and Fermat on coordinate 
geometry:  
 

If I have been able to see further, it was only because I 
stood on the shoulders of giants. 

 

In each case their work was based upon  (1)  familiarity with the important earlier 
insights of Viète on studying geometrical questions by algebraic methods,   (2)  a desire 
to understand or reconstruct the deep and partially lost results of Apollonius and others 
on conics and related figures.  Fermat was a mathematician by avocation rather than 
profession, and virtually none of his work was published during his lifetime.  In contrast, 
Descartes was a scholar by profession and published his findings promptly, and largely 
because of this he generally receives most of the credit for developing coordinate 
geometry.  Aside from his publication of his findings and the rapid adoption of his ideas 
by those who read his works, Descartes’ superior algebraic notation marks another 
respect in which he surpassed Fermat.  On the other hand, his writings on geometry 
were often vague, and many things often associated with his name — for example, 
orthogonal coordinate axes and the explicit descriptions of points as ordered pairs or 
triples of numbers (which we now call  Cartesian coordinates)  — are not mentioned 
at all in his writings.   Also absent are formulas for basic quantities like slope and 
distance.  There is no full use of negative coordinates, and no new curves are plotted 
using coordinates.  As Boyer says in his  History of Mathematics, “Descartes was 
probably the most able thinker of his day, but at heart he was not a mathematician.”  
This view is underscored by the fact that his discussion of coordinate geometry is 
formally just part of one addendum,  La Géométrie, to his work, Discours de la méthode 
pour bien conduire sa raison et chercher la vérité dans les sciences (Discourse on the 
Method of Correctly Reasoning and Seeking Truth in the Sciences), which is one of the 
most important and influential books on the philosophy of science that has ever been 



written. Together with the writings of Francis Bacon (1591 – 1626), Descartes’ Discours 
laid the foundations for the modern scientific method.    
 

Several mathematicians and scientists quickly recognized the importance of Descartes’ 
writings on coordinate geometry, and subsequent descriptions of his ideas by F. de 
Beaune (1601 – 1652) and F. van Schooten (1615 – 1660) made Descartes’ methods 
accessible to a wide audience.  Van Schooten’s efforts were particularly extensive, and 
an expanded version of his first commentary, completed with assistance from de 
Beaune, Hudde, Heuraet, and J. de Witt (1625 – 1672, more widely known as the 
Grand Pensionary or Regent of Holland from 1653 to 1672), was extremely influential.   
See  http://en.wikipedia.org/wiki/Johan_de_Witt  for an overview of de Witt’s political and 
other activities. 

 

One noteworthy advance in Descartes’ work is his willingness to grant higher order 
algebraic plane curves the same legitimacy as lines and circles.  However, he also 
distinguishes carefully between such curves and transcendental (mechanical) curves, 
the distinction being his view that algebraic (geometric) curves could be described 
exactly while mechanical curves — for example, the classical Quadratrix of Hippias — 
are given by two separate movements.  Subsequent progress in mathematics during the 
next century or so led mathematicians to view all such “mechanical” curves as equally 
legitimate, and in the 19th century mathematicians also realized the need to work with 
still other classes of curves that could not even be constructed by any mechanical 
means, including some that are too irregular to have reasonably defined finite lengths.  
These include curves with discontinuous jumps, the objects now known as fractal 
curves (for example, see the online articles http://en.wikipedia.org/wiki/Fractal  and 
http://mathworld.wolfram.com/Fractal.html), and even more bizarre examples like the 
plane – filling curve of G. Peano (1858 – 1932) which passes through every point in the 
closed region bounded by a square in a finite amount of time.  The following files contain 
further information on distinguishing between algebraic and transcendental curves: 

 

http://math.ucr.edu/~res/math153/transcurves.pdf 
 

http://math.ucr.edu/~res/math153/transcurves2.pdf 
 

http://math.ucr.edu/~res/math153/transcurves3.pdf 
 

http://math.ucr.edu/~res/math144/transcendentals.pdf 
 

Further information on the Peano curve and its generalizations appears in the online site 
 

http://en.wikipedia.org/wiki/Space-filling_curve 
 

and more formally in Section 44 of the graduate level textbook, Topology (Second 
Edition),  by  J. R. Munkres  (Prentice – Hall, Saddle River NJ, 2000).  Here are two 
videos which respectively illustrate the steps in constructing a standard fractal curve (the 
von Koch snowflake) and the Peano curve: 
 

https://www.youtube.com/watch?v=xlZHY0srIew 
 

https://www.youtube.com/watch?v=xhxv0BPHGFE 
 
Comparisons between Descartes’ and Fermat’s work.  Although both Descartes and 
Fermat began with the same basic sources and were led to the same idea of specifying 
positions by means of what we now call coordinates, their emphases were often entirely 
different.   One basic difference was that Descartes started with a curve and then 
derived an equation for it, while Fermat started with an equation and then described the 
curve.  Fermat’s approach led him directly to the standard first and second degree 



equations for lines and conics.   He further uses his methods to reprove old and new 
geometrical results including the following:  
 

THEOREM.   Given any number of fixed lines which are not all parallel to each other, the 
set of points such that the sum of the squares of the segments drawn at given right 
angles from the point to the lines is constant, is an ellipse.  
 

This result illustrates the power of the methods, for such a conclusion would be nearly 
impossible to prove without analytic geometry.   However, with the help of algebra it is 
fairly simple, because the condition in the theorem can be expressed as 
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This follows because the absolute values of the bracketed expressions are equal to the 
distances from the point (x, y) to the lines with equations  an x + bn y + c  =  0, and the 
entire sum is the equation of an ellipse if the lines are not all parallel to each other.  
 
On the other hand, Descartes illustrated the applicability of his methods by using them to 
give new derivations of some noteworthy classical results in Greek geometry due to 
Apollonius and Pappus (see pages 368 – 369 of Burton and the exercises for this unit).   
Many dealt with so – called locus problems, which call for alternate characterizations of 
sets of points which satisfy certain conditions (for example, if  P and Q are distinct points 
in the plane then the set, or locus, of all points which are equidistant from P and Q is the 
line which is the perpendicular bisector of the line segment [PQ]).  The files  
 

http://math.ucr.edu/~res/math153-2019/locus-problems.pdf 
 

http://math.ucr.edu/~res/math153-2019/locus-problems1.pdf  
 

http://math.ucr.edu/~res/math153-2019/locus-problems2.pdf  
 

http://math.ucr.edu/~res/math153-2019/locus-problems3.pdf  
 

discuss numerous problems of this type, in one case contrasting the proofs by classical 
and coordinate methods, and in several other cases the problems are solved using 
coordinate geometry. 
 

One can summarize the differences between Descartes’ and Fermat’s treatments of 
coordinate geometry by saying that Fermat’s exposition and clarity were superior to 
Descartes’, his analytic geometry is closer to our own, and in particular he uses 
rectangular coordinates just as we do today.  On the other hand, we have already noted 
that Descartes’ notation was superior to Fermat’s. 
 

At various points we have noted that even during the 17th century mathematicians were 
not always ready to use negative numbers just as freely as positive ones.  There does 
not seem to be any clear point at which most mathematicians accepted (surely with 
reluctance in many cases) the use of negative numbers in algebraic formalism, but one 
important step was in 1657,  when J. Hudde (1633 – 1704) was apparently the first 
writer to let letters represent negative as well as positive numbers.  

 



Descartes’ contributions to algebra 
 
We have already mentioned Descartes’ key role in the development of modern symbolic 
notation.  As indicated on pages 372 – 375 of Burton, algebraic formalism is a major 
theme in the third and last book of La Géométrie.  In particular, Burton mentions a result 
for estimating the numbers of positive and negative real roots of a polynomial which is 
called Descartes’ rule of signs.  A proof of this result appears in Section VI I.7 of the 
following (previously cited) classic college algebra textbook: 
 

A. A. Albert.  College Algebra  (Reprint of the 1946 Edition).  
University of Chicago Press, Chicago, IL, 1963.  

 

The file  http://math.ucr.edu/~res/math153-2019/descartes-signs.pdf  contains worked out 
examples involving this rule. 

 
Fermat’s work on number theory 

 
Much of Fermat’s mathematical legacy involves his work on number theory, so we shall 
mention just a few points related to topics raised earlier in these notes.  In particular, we 
have already mentioned the Euclid – Euler characterization of even perfect numbers, 

which involves primes of the form  2n – 1.   Fermat is credited with showing that a 
number of this form can be prime only if n is prime.  The proof is a striking illustration of 

symbolic manipulations; it yields a simple factorization of 2n – 1 if n can be written as a 
product of two smaller positive integers r and s. 
 

  
 

Here are two further results along the same lines: 
 

(1)   If p is an odd prime, then 2p divides 2p – 2,  or equivalently p divides  

2 
p – 1  –  1.  

 

(2)   If p is as above, then each divisor of  2 
p – 1 has the form 2 p k  + 1. 

 

The second result reduces the number of divisors one must check to determine if 2 
p – 1 

is prime.   
 

The following generalization of (1) is a standard item in undergraduate number theory, 
discrete mathematics and abstract algebra courses: 
 

“Little Fermat” Theorem.   If p is an arbitrary prime and a is an arbitrary (positive) 

integer,  then p divides a 
p – a. 

 

The first published proof is due Euler (1732) in a much more general form; Leibniz left an 
earlier proof in manuscript form.   This result provides a starting point for computer – 
assisted procedures to determine whether a given number is prime, and Euler’s 
generalization of the Little Fermat Theorem plays an important role in the RSA public 
key computer encryption method due to R. Rivest (1948 – ), A. Shamir (1952 – ), and L. 
Adelman (1945 – ).  Further information on these topics can be found on pages 238 – 



243 of the following discrete mathematics textbook: 
 

K. H. Rosen, Discrete Mathematics and Its Applications (6th Ed.).  
McGraw – Hill, Boston, MA, 2007. 

 

In the earlier discussion of Diophantine problems (and the material on Fibonacci) it was 
noted that no numbers of the form  4k + 2  or  4k + 3 could be realized as sums of two 
squares.  Conversely, one can ask which of the remaining numbers can be so 
represented.  In his writings Fermat stated that every prime number of the form 4k + 1 
could be so represented; once again, the first published proof was due to Euler, and the 
argument is described in the following online document: 
 

http://en.wikipedia.org/wiki/Proofs_of_Fermat%27s_theorem_on_sums_of_two_squares 
  

Another part of Fermat’s number – theoretic output involves integral solutions to 

Diophantine equations of the form   x 
2 + a =  y 

3, where a is some fixed integer.   In 
the cases a = 2 and a = 4, he claimed that the only integral solutions were (5, 3) 
in the first instance and (2, 2) and (11, 5) in the second.  Euler also considered these 
questions, but mathematically complete proofs of Fermat’s claims were not published 
until later in the 19th century.  Proofs of these results at the advanced undergraduate or 
introductory graduate level are outlined in the following online documents: 

 
http://www.math.purdue.edu/~lipman/453/hw10solns.pdf 

 

http://math.ucr.edu/~res/math153-2019/morefermat.pdf  
 

Deeper results of A. Thue  (1863 – 1922) near the beginning of the 20th century show  

more generally if  a is an arbitrary fixed integer then the equation  x 
2 + a =  y 

3 has 
only finitely many (possibly zero) integral solutions. 
 

Fermat usually did not give proofs for his number theoretic results, but he often gave 
some examples; not surprisingly, many of his contemporaries were unhappy with his 
practice of not supplying proofs.  Regarding the reasons for this, the MacTutor site’s 
biographical sketch states that  “Fermat had been hoping his specific problems would 
lead them to discover, as he had done, deeper theoretical results.”  One can speculate 
whether competitiveness was also a factor, but in any case he had good relations with 
his contemporaries.  Even though he did not communicate his proofs, there is only one 
significant instance in which a claim of his turned out to be incorrect (however, as noted 
below the currently known proofs often require mathematical ideas and methods which 
were definitely not available during his lifetime). 
  

Finally, no discussion of Fermat and number theory can be complete without considering 
Fermat’s Last Theorem:  
 

If n   >   2, then the equation   x 
n + y 

n = z 
n has no 

solutions over the positive integers. 
   

It is beyond the scope of this course to recount the entire history of work on this problem 
or of its ultimate solution near the end of the 20th century.   A very brief description of 
some key points is given on pages 383 – 384 of the following reference: 
 

M. J. Greenberg,   Euclidean and non – Euclidean geometries: Development 
and history (Fourth Ed.).  W. H. Freeman, New York, NY, 2007.  

 



An accurate, popularized, and relatively accessible account of these points is given in 
the following textbook: 
 

S. Singh. Fermat’s Enigma:  The Epic Quest to Solve the World's Greatest 
Mathematical Problem (with a foreword by J. Lynch).  Anchor Books, New York,  
NY, 1998.   

 

In this document we shall only comment on the underlying mathematics very briefly.  
The cases n = 3, 4 can be disposed of by techniques developed in upper level 
undergraduate (or introductory graduate) level abstract algebra courses, and proofs for 
many other values of n were obtained over the years.  During the nineteen eighties a 
major breakthrough was made by G. Faltings (1954 – ), who showed that there are at 

most finitely such solutions for which  x,  y and z  are relatively prime.   This result 
required an enormous amount of mathematical machinery that had been developed in 
the meantime.  Fermat’s Last Theorem was finally established by A. Wiles (1953 – ) in 
1994, with some parts of the first correct proof filled in jointly with R. Taylor (1962 – ); 
this proof required a large amount of input from a wide range of mathematical subjects, 
and  the techniques required for the proof go far beyond anything that was known, 
or even imagined, in the 17th century.    
 

Shortly after the announcement of Wiles’ breakthrough there was a challenge to the 
proof in popular circles, but the concerns which arose were fairly quickly resolved.  An 
accurate summary is given under the heading, Controversy regarding Fermat’s last 
theorem, in the following online reference: 
 

http://en.wikipedia.org/wiki/Marilyn_vos_Savant 
 

A natural question about Fermat’s Last Theorem concerns the significance of the 
solution.  The result by itself does not have any known “practical” applications of its 
own.  However, the solution of the problem is significant because it illustrates the power 
of mathematical methods that were developed during the 350 years between Fermat’s 
statement of the result and its proof, and it is also significant because the problem 
directly or indirectly led to profound developments in many mathematical areas which 
definitely have found broad ranges of uses, both in mathematics itself and also in other 
subjects.   
 

As indicated above, Fermat probably would have been very pleased with this outcome. 

 
Addenda to this unit 

 
There are three items, the first of which (11.A) discusses the divisors of numbers 

expressible in the form  2n – 1.   Additional problems on logarithms and geometric loci 
(plural of locus) are formulated and solved in (11.B), and (11.C) states the basic 
principle for choosing coordinate systems that allow one to simplify the computations 
which arise when working with coordinates.  One additional file on the (generally 
obsolete) use of logarithms for computation, four files on the difference between 
algebraic and transcendental functions, and four additional files on locus problems are 
directly related to the material in this chapter, and they have already been cited. 
 


