Another Locus Exercise

Problem. Suppose we are in the coordinate plane, and let A and L denote the origin and the vertical line $x=1$ respectively. Find the locus (set) of all points P such that the square of the square of the distance from P to A is equal to the distance from P to L.

Solution. If $P=(x, y)$, then the square of the distance from P to A equals $x^{2}+y^{2}$ and the distance from P to L equals $|x-1|$. Therefore the defining equation of the set is $x^{2}+y^{2}=|x-1|$. It will be convenient to split this into a pair of equations:

$$
x^{2}+y^{2}=x-1 \quad \text { or } \quad x^{2}+y^{2}=1-x
$$

The first equation can be rewritten in the form

$$
\left(x-\frac{1}{2}\right)^{2}+y^{2}=-\frac{3}{4}
$$

and the second can be rewritten in the form

$$
\left(x+\frac{1}{2}\right)^{2}+y^{2}=\frac{5}{4} .
$$

There are no real number solutions to the first equation because a sum of real squares is never a negative real number, and the solutions to the second are given by the points on the circle of radius $\frac{1}{2} \sqrt{5}$ with center $\left(-\frac{1}{2}, 0\right)$. Therefore the locus is equal to this circle.■

