12.E. Derivation of the Binomial Series

This is fairly standard but is included for the benefit of anyone who has not seen it previously. For an arbitrary real number a and a nonnegative integer r we write

$$
\binom{a}{r}=\frac{a(a-1) \cdots(a-r+1)}{r!}
$$

generalizing the familiar notation when n is a nonnegative integer. Note that this quantity is eventually zero if a is a nonnegative integer and r is sufficieintly large, but otherwise it is not. Furthermore, for all a and r we have the so-called "Pascal's Triangle" Identity:

$$
\binom{a}{r}=\binom{a}{r-1}+\binom{a-1}{r-1}
$$

Verifying this is a straightforward algebraic exercise.
MAIN THEOREM. If $|x|<1$ then we have

$$
\sum_{k=0}^{\infty}\binom{a}{k} x^{k}=(1+x)^{a}
$$

Sketch of derivation. We shall leave many of the details for the reader to fill in as needed. We must also assume that a is not a nonnegative integer; by the ordinary Binomial Theorem we know what happens if the exponent is a nonnegative integer, and the following discsussion breaks down because $(1+x)^{n}$ is a finite sum if n is a nonnegative integer.

Let $P_{a}(x)$ be the power series on the left hand side of the display. Then the theory of power series in first year calculus yields the following information:
(i) This series converges absolutely if $|x|<1$ and diverges if $|x|>1$ by the ratio test.
(ii) Term by term differentiation yields the identity $P_{a}^{\prime}(x)=a P_{a-1}(x)$ for all a and x such that the series converges absolutely.
(iii) Standard manipulations for convergent power series and the generalized Pascal Triangle Identity imply that $P_{a}(x)=(1+x) P_{a-1}(x)$.
If a is a nonzero integer, then we also know that

$$
\frac{d}{d x}(1+x)^{a}=a(1+x)^{a-1}
$$

and for more general values of a we can establish this by the logarithmic differentiation rule

$$
\frac{d y}{d x}=y \cdot \frac{d}{d x} \ln y
$$

provided $|x|<1$. Furthermore, one can check directly that the identity in the theorem is valid when $x=0$.

To verify that the identity is true in general consider the function

$$
g(x)=(1+x)^{-a} \cdot P_{a}(x)
$$

Straigntforward application of the Leibniz rule for differentiating products implies that the derivative of this expression equals

$$
(-a)(1+x)^{-a-1} P_{a}(x)+(1+x)^{-a} \cdot\left(a P_{a-1}(x)\right)
$$

and if we apply (iii) this expression becomes

$$
(-a)(1+x)^{-a-1} P_{a}(x)+a(1+x)^{-a-1} \cdot P_{a}(x)=0
$$

so that g is a constant function. Since we have noted that $g(0)=1 / 1=1$, it follows that $g(x)=1$ for all x. Finally, if we multiply both sides of this equation by $(1+x)^{a}$ then we obtain the equation in the statement of the theorem..

