
3.C.  Further comments on axioms for geometry 
 
 
One important feature of the Elements is that it develops geometry from a very short list of 
assumptions.   Although axiom systems like Hilbert’s (or G. D. Birkhoff ’s) eliminate the logical 
deficiencies of Euclid’s framework in the Elements, they are certainly far less concise and 
require several additional undefined concepts.   For several reasons it is worthwhile to know 
whether there are alternatives which require fewer undefined concepts and postulates about 
these concepts.  Here are a few: 
 

1. Brevity.  The conciseness of Euclid’s assumptions is one of the most striking 
features of his work, and it illustrates the power of logical deduction very 
convincingly.  One would like a system that is logically rigorous but not so long that it 
dilutes this impression any more than it absolutely necessary. 

 

2. Consistency.   Whenever one makes a list of assumptions, it is fair to ask for some 
assurance that they do not lead to logical contradictions.  Fewer assumptions allow 
one to study such issues of logical consistency more effectively. 

 

3. Clarity.  Notwithstanding the points raised above, for many points it is also desirable 
to have working versions of axiomatic systems that are not so terse that they are 
needlessly difficult or awkward to handle.  It is desirable to strike a balance between 
eliminating redundancies and sacrificing clarity.  

 

Initially the second point might be surprising, especially if one views axioms for geometry as 
reflecting the properties of physical space.  However, since the formal setting for deductive 
geometry is an idealization of these properties, it is legitimate to ask for evidence that such 
axioms do not lead to problems like conclusions that logically contradict each other.   In 
mathematics, the appropriate evidence is known as a relative consistency proof.  In other 
words, the objective is to prove that the setting for geometry is consistent if our standard 
assumptions for the arithmetic of positive whole numbers are consistent, so that a lack of 
consistency for the geometric axioms would imply deeper problems with our understanding of 

simple arithmetic.  Landmark results of K. Gödel (1906 – 1978) show that one can never be 
absolutely sure that our logical setting for arithmetic is logically consistent, but for thousands of 
years this has proven to be a totally reliable working assumption.  The following whimsical 
comment due to André Weil (pronounced VAY, 1906 – 1998) summarizes this state of affairs: 
 

God exists since mathematics is consistent, and 

the Devil exists since we cannot prove it. 
 

During the past two decades a few highly reputable mathematicians have begun to look 
seriously at the possibility that the generally accepted logical foundations for mathematics are 
not entirely consistent, but this it is too early to predict what these studies will yield. 
 
Important note.  In any discussion of simplified axiom systems, it is important to remember that 
one rarely gets something for nothing.  Showing that some axioms are logical consequences of 
others will always require proofs, and some might be extremely long, difficult, or not especially 
well motivated at first glance.  
 

As noted in the main notes for this unit, the axiom systems of both Hilbert and Birkhoff can 
found at the following online site: 
 

http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/hyprgeom.html 
 



Both of these axiom sets give priority to clarity over conciseness.  In fact, the following earlier 
paper by Birkhoff gave an extremely economical list of axioms for Euclidean geometry: 
  

G. D. Birkhoff,  A set of postulates for plane geometry (based on scale 

and protractors),  Annals of Mathematics (2) 33 (1932), pp. 329 – 345. 
 

Similarly, an extremely short list of axioms for Euclidean geometry based upon Hilbert’s 
approach is given in the following book: 
 

H. G. Forder, The foundations of Euclidean geometry (Reprint of the 
original 1927 edition).  Dover, New York, 1958.  

 

The axioms described below are not quite as terse or strong as those in Birkhoff’s paper, but 
they are in the same spirit as Birkhoff’s axioms described in the online link, and they rely very 
substantially on certain results from Forder’s book.  As in Birkhoff’s approach, the underlying 
idea is that one should use the algebraic and other properties of the real numbers to expedite 
the development of geometry.  In keeping with the modern formulation of mathematics in terms 

of set theory, the axioms for plane geometry begin with a set EPLANE containing at least 
three elements.  The points in this geometry will simply be the elements of the given set 

EPLANE.  Euclidean plane geometry can then be based upon the following six axioms. 
 

AXIOM 1:  

There exist nonempty proper subsets of   EPLANE called lines, with the properties that 
each two points belong to exactly one line.  
 

AXIOM 2:  

Corresponding to any two points A, B ∈∈∈∈  EPLANE   there exists a unique nonnegative 

real number |AB|  =  |BA|, the distance from A to B, which is zero if and only if A  =  B. 
 

AXIOM 3 (Birkhoff’s Ruler Postulate):  

If  L  is a line and RRRR denotes the set of real numbers, there exists a  one – to – one  

correspondence  (X ↔ x) between the points  X ∈∈∈∈ L  and the real numbers  

x ∈∈∈∈ RRRR  such that  
 

|AB|    =     |a  –  b| 
 

where  A ↔ a and B ↔ b. 

 
Digression.    Before proceeding we need to define betweenness and convexity for a system 
satisfying the first three axioms.  Given three collinear points A, B, C,  we shall say that  

A ∗ B ∗ C  holds (equivalently, B is between A and C) provided  
 

|AC|    =     |AB|  +   |BC|. 
 

A subset  K  of  EPLANE  is said to be convex provided  A ∈∈∈∈ K,  C ∈∈∈∈ K  and  A ∗ B ∗ C    

imply  B ∈∈∈∈ K.  Equivalently, this means that if A and C lie in K then so does the whole closed 

segment joining them.  Intuitively, this means that the set has no dents or holes.  Illustrations in 
the following online sites depict some sets which are convex and others which are not: 
 

http://www.ams.org/featurecolumn/images/cubes33.gif 
 

http://en.wikipedia.org/wiki/Convex_set 
 

http://www.artofproblemsolving.com/Wiki/images/a/a3/Convex_polygon.png 
 

http://upload.wikimedia.org/wikipedia/commons/2/20/Rouleaux_triangle_Animation.gif 



AXIOM 4 (Plane Separation Postulate):  

For each line L there are exactly two nonempty convex sets  H′′′′ and H′′′′′′′′  satisfying  

( i)     EPLANE    =    H′′′′  ∪∪∪∪  L  ∪∪∪∪  H′′′′′′′′,  

( ii)    H′′′′  ∩∩∩∩  H′′′′′′′′  =    ∅∅∅∅,  H′′′′  ∩∩∩∩  L  =  ∅∅∅∅, and  H′′′′′′′′  ∩∩∩∩  L  =    ∅∅∅∅....  That is, the three sets are 

pairwise disjoint.  

( iii)   If  X ∈∈∈∈ H′′′′  and  Y ∈∈∈∈ H′′′′′′′′  and [XY]  is the closed segment joining  X  to  Y,  then we 

have  [XY]  ∩∩∩∩  L     ≠≠≠≠       ∅∅∅∅....        
A figure illustrating this axiom is given below.  As in the statement of the third condition, one has  

X ∈∈∈∈ H′′′′  and  Y ∈∈∈∈ H ′′′′′′′′, while the point Z lies on the same side H′′′′  as X.  Note in particular that 

the entire segment [XZ]  lies in H′′′′. 
 

 
 
AXIOM 5 (Planar Congruence Postulate):  

Suppose that we are given two quadruples of points A, B, C, D and A′′′′, B′′′′, C′′′′, D′′′′ such 

that the following hold: 
 

1. B is between A and C. 

2. B′′′′ is between A′′′′ and C′′′′. 

3. D does not lie on the line containing A, B and C. 

4. D′′′′ does not lie on the line containing A′′′′, B′′′′ and C′′′′. 

5. We have |AB| = |A′′′′    B′′′′    |,  |BC| = |B′′′′    C′′′′    |, and |CD| = |C′′′′    D′′′′    |    . 
 

Then   |AD|  =  |A′′′′D′′′′ | also holds.   
 

The figure below illustrates the Planar Congruence Postulate; following standard practice in 
elementary geometry, we have marked the corresponding segments assumed to have equal 
length. 
 

 



 

 

AXIOM 6 (Euclidean Parallel Postulate, Playfair’s version):  
 

For a given line L and a point P not on  L, there exists one and only one line  L′′′′  

through  P  such that  L′′′′  is parallel to L (in other words, the lines are coplanar but do 
not have any points in common). 

 

Proving that this axiom system actually implies the Birkhoff axioms in the online link is nontrivial 
and beyond the scope of this course; the main point here is that one can write down a set of 
axioms for Euclidean geometry that does not look much more complicated than the stated 
assumptions in the Elements. 

 
General considerations about axioms for geometry 

 
We have already mentioned the question of relative logical consistency.  There are also two 
other basic issues for any set of axioms.  One, which is implicit in the discussion thus far, is 
logical independence of axioms.  If we make a list of three assumptions but the third is a 
logical consequence of the other two, then there is no formal reason to include the third one 
(although there may well be other reasons for doing so).   Another issue involves the 
completeness of a list of axioms.  This means that any two systems are essentially the same 
for all mathematical purposes.  In the case of our axioms for geometry this would mean the 

existence of a one-to-one correspondence between the sets of points PPPP and QQQQ such that 

collinear sets of points in PPPP correspond to collinear sets of points in QQQQ, noncollinear sets of 

points in PPPP correspond to noncollinear sets of points in QQQQ, and if the points X and Y in PPPP 

correspond to the points A and B in QQQQ, then the distances between points satisfy |AB| = |XY|.  

Frequently one also says that a system of axioms is categorical if it has this sort of uniqueness 
property.   
 

Certainly mathematicians want all axiomatic systems to be (relatively) logically consistent, and 
we have already discussed the desirability of logical independence.  For Euclidean geometry 
one wants a categorical axiomatic system, but there are also many places in mathematics 
where one does not.  For example, the standard rules of arithmetic for addition, subtraction and 
multiplication are axiomatized into an abstract concept called a commutative ring, and one 
important feature of these axioms is that they apply to a vast array of algebraic systems that are 
quite different from each other in many important respects.    We shall discuss consistency, 
independence and completeness for the axioms of geometry below.  The following online 
references contain further information of a general nature: 
 

http://en.wikipedia.org/wiki/Axiomatic_system 
 

http://www.andrew.cmu.edu/course/80-110/math_outline.html 
 

Proofs that the axioms for Euclidean geometry are consistent and categorical appear in the 
book by Moïse cited earlier in these notes (see the document on constructions by straightedge 
and compass).  Both proofs are based upon standard material from lower and upper level 
undergraduate mathematics course, but the entire arguments are long and sometime messy.  
The proof of categoricity is the easier one, and it essentially comes down to the construction of 
a rectangular coordinate system (this is worked out explicitly in Moïse).  Here is an online 
summary of the main steps in the relative consistency proof: 
 

http://math.ucr.edu/~res/math133/verifications.pdf 
 



The issue of independence is particularly significant because of the interest in proving Euclid’s 

Fifth Postulate (equivalently, Axiom 6 in our list) from the others.  In the early nineteenth century 

several mathematicians – most notably C. F. Gauss (1777 – 1855), J. Bolyai (1802 – 1860) 

and N. Lobachevsky (1792 – 1856)  – concluded independently that one could not prove the 
Fifth Postulate from the others and that it was possible to work out an entire theory of geometry 

in which this postulate is false.  Somewhat later in the same century, E. Beltrami (1835 – 1900) 

confirmed this rigorously by constructing an explicit system consisting of a set  HPLANE, with 
a suitable notion of distance between two points and a corresponding family of abstract subsets 
as lines, such that our first five axioms for geometry hold but the sixth, which is equivalent to 
Euclid’s Fifth Postulate, is false.  In particular, Beltrami’s research showed that the axiomatic 
system given by assuming  

 

1. all of Axoms 1 – 5 as above are true,  
 

2. the final Axiom 6 as above is false, 
 

is (relatively) logically consistent.  In other words, such an axiom system is consistent if the 
standard axioms for the positive integers are logically consistent; it also follows that such an 
axiom system is logically consistent provided the standard axioms for Euclidean geometry are 
logically consistent. 
 

Subsequently other models proving the independence of the Parallel Postulate were 

constructed by F. Klein (1849 – 1925) and H. Poincaré (1854 – 1912).   The book by Moïse 
also outlines a proof that Poincaré’s model satisfies the same two conditions as Beltrami’s.   

Additional information about this topic (Non – Euclidean Geometry) is given in the following 
online references: 

 

http://math.ucr.edu/~res/geometrynotes5a.pdf 
 

http://math.ucr.edu/~res/geometrynotes5b.pdf 
 

http://math.ucr.edu/~res/geometrynotes5c.pdf  
 

Given that Axioms 1 – 6 are categorical, it is natural to ask what happens if Axioms 1 – 5 

remain true but Axiom 6 is false.   The answer is that the axioms are very nearly categorical.  

More precisely, if we are given two such systems with underlying sets of points PPPP and QQQQ, then 

there is  a one – to – one correspondence between the sets of points PPPP and QQQQ such that 

collinear sets of points in PPPP correspond to collinear sets of points in QQQQ, noncollinear sets of 

points in PPPP correspond to noncollinear sets of points in QQQQ, and if the points X and Y in PPPP 

correspond to the points A and B in QQQQ, then there is a unique positive constant r such that the 

distances between points satisfy |AB|  =  r |XY| for all choices of A, B, X and Y.  A proof of this 

result is described in an online site we have previously mentioned: 
 

http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/hyprgeom.html 
 

One point to note in the uniqueness result is the need to introduce a positive constant r.   The 
uniqueness result for systems satisfying all six Euclidean axioms did not require a positive 
constant.  One explanation of this difference is that the usual theory of similar triangles in 
Euclidean geometry breaks down completely if the Parallel Postulate is false. 
 

 



Postscript  —  Axioms for Euclidean and non – Euclidean solid geometry 

 
Several complications arise if one tries to construct a similar set of axioms for solid geometry.   
As in the planar case, we begin with a set ESPACE, this time containing at least four 

elements.  The points in this geometry will simply be the elements of the given set ESPACE.   
One immediate complication is that, in addition to a family of subsets called lines, there is also 
a second family of subsets called planes.  These must be assumed to satisfy a list of further 
properties in addition to AXIOM 1; the additional properties, which are all fairly elementary, are 
listed on page 36 of the following online document: 
 

http://math.ucr.edu/~res/math133/geometrynotes2a.pdf 
 

In the 3 – dimensional setting one again has a notion of distance (AXIOM 2) and the Birkhoff 
Ruler Postulate (AXIOM 3) exactly as in the planar case, but the Plane Separation Postulate 
(AXIOM 4) must be augmented with a stronger assumption called the  Space Separation 
Postulate : 
 

AXIOM 4+ (Space Separation Postulate):  

For each plane P there are exactly two nonempty convex sets  H′′′′ and H′′′′′′′′  satisfying  

( i)     ESPACE    =    H′′′′  ∪∪∪∪  P  ∪∪∪∪  H′′′′′′′′,  

( ii)    H′′′′  ∩∩∩∩  H′′′′′′′′  =    ∅∅∅∅,  H′′′′  ∩∩∩∩  P  =  ∅∅∅∅, and  H′′′′′′′′  ∩∩∩∩  P  =    ∅∅∅∅....  That is, the three sets are 

pairwise disjoint.  

( iii)   If  X ∈∈∈∈ H′′′′  and  Y ∈∈∈∈ H′′′′′′′′  and [XY]  is the closed segment joining  X  to  Y,  then we 

have  [XY]  ∩∩∩∩  P     ≠≠≠≠       ∅∅∅∅....    
 

It turns out that if AXIOM 4+ is true, then one can prove that AXIOM 4 is true for every plane in 

ESPACE.      There is no change to AXIOM 5 (however, the four point configurations A, B, C, D 

and A′′′′, B′′′′, C′′′′, D′′′′ do not necessarily have to lie in the same plane), and in AXIOM 6 (the 

Parallel Postulate) the condition that L′′′′  and L  be coplanar is essential.  This completes the list 

of axioms for ESPACE.   The corresponding axioms for  HSPACE  can be obtained by 
assuming that all the preceding axioms except for (the modified) AXIOM 6 are true and that (the 
modified) AXIOM 6 is false.  Not surprisingly, proofs that these axioms are consistent and 

categorical are more difficult than their  2 – dimensional counterparts. 
 
 

Books on the axioms of geometry 
 
 
There are too many individual titles to mention here and many of them are written at a very high 
level, but the following recent textbook discusses different approaches to formulating axioms in 

a wide – ranging way at the level of undergraduate mathematics: 
 

G. A. Venema,  Foundations of Geometry (2
nd

 Ed.).  Pearson,  Boston MA, 2012. 

 
 


