
1. Mathematics in the earliest civili zations 
 
 

(Burton, 1.1-1.3,  2.2 – 2.5) 
 
 
Both archaeology and anthropology show that most if not all human cultures 
have had at least some crude concepts of numbers, with the earliest 
archaeological evidence scientifically dated around 30,000 years ago.  Numerous 
archaeological discoveries also indicate that numerous prehistoric cultures had 
discovered that counting larger quantities was easier with some means of 
grouping together fixed numbers of objects.   For example, twelve stones could 
be arranged in two groups of five and one group of two, and similarly for other 
numbers one can count off groups of five until there are less than five items left.  
Such arrangements are the first step in the development of a number system.   
 
Although the study of rudimentary number concepts in prehistoric and other 
primitive cultures is potentially an interesting subject, for our purposes it will be 
best simply to recognize the near-universal awareness of the number concept as 
given and to move on to the development of mathematics within the ancient 
civilizations that emerged about 5000 years ago.   In this unit we shall focus on 
two civilizations that have had a particularly strong impact on mathematics as we 
know it today; namely, Egyptian and Mesopotamian civilizations.   Extensive 
information on numbering systems in other cultures is contained in the following 
reference: 
 

Ifrah, Georges,. The universal history of numbers. From prehistory to 
the invention of the computer.. Translated from the 1994 French 
original by David Bellos, E. F. Harding, Sophie Wood and Ian Monk. 
John Wiley & Sons, Inc., New York, 2000. ISBN: 0–471–37568–3�  

 
Existing records of ancient civilizations are often very spotty in many respects, 
with very substantial information on some matters and little if anything on others. 
Therefore any attempt to discuss mathematics in ancient civilizations must 
recognize that one can only discuss what is known from currently existing 
evidence and accept that much of these cultures’ mathematics has been lost with 
the passage of time.   However, we can safely conclude that such cultures were 
quite proficient in some aspects of practical mathematics, for otherwise many of 
the spectacular engineering achievements of ancient cultures would have been 
difficult to plan and impossible to complete.  All statements made about pre-
Greek mathematics must be viewed in this light, and for civilizations in other 
parts of the world (China in particular) the unevenness of evidence extends to 
even later periods of time.    
 
 
 



Expressions for whole numbers in Egypt and Mesopotamia   
 
In most but not all cases, the development of written records is closely linked to 
the birth of a civilization, and many such records are basically numerical.  
Therefore we have some understanding of the sorts of numbering systems used 
by most of the ancient civilizations.  In most cases it is apparent that these 
civilizations had also discovered the concept of fractions and had devised 
methods for expressing them.   
 
One extremely noteworthy point is that different civilizations often took quite 
different approaches to the problem of setting up workable number systems, and 
this applies particularly to fractions.  Perhaps the simplest question about number 
systems concerns the choices for grouping numbers.  The numbers 5 and 10 
usually had some particular significance.  For example, Egyptian hieratic writing 
had separate symbols for 1 through 9, multiples of 10 up to 90, multiples of 100 
through 900, and multiples of 1000 through 9000; it should also be noted that the 
earlier hieroglyphic Egyptian writing included symbols for powers of 10 up to ten 
million).   A number like 256 would then be represented by the symbols for 200, 
50 and 6; this is totally analogous to the Roman numeral expression for 256 as 
CCLVI.  Numerous other cultures had similar systems; in particular, in classical 
Greek civilization the Greek language used letters of the alphabet to denote 
numbers from 1 to 9, 10 to 90 and 100 to 900 in exactly the same fashion.   
 
Although 10 has played a key role in most number systems, there have been 
some notable exceptions, and traces of some are still highly visible in today’s 
world.  The Mayan civilization placed particular emphasis on the numbers 5 and 
20.  Roman numerals indicate a special role for 5 and 10.  However, the 
Sumerians in Mesopotamia developed  the most extraordinary alternative during 
the third millennium B. C. E.  They used a sexagesimal  (or base 60) system 
that we still use today for telling time and some angle measurements:  One 
degree or hour has sixty minutes, and one minute has sixty seconds.  The 
Mesopotamian notation for numbers from 1 to 59 is strikingly similar to the 
notation we use today.  In particular, if n is a positive integer less than 60 and we 
write  
 

n   =   10p  +  q      where      0  ≤≤  p  ≤≤  5  and 1  ≤≤  q  ≤≤  9 
 
then n was written as a combination of p thick horizontal strokes and q thin 
vertical strokes.  Much like our modern number system, larger positive integers 
were expressed in a form like  
 

a0    +    a1 ×× 60    +    a2 ×× 602    +    a3 ×× 603     +    …    +    aN ×× 60N 
 
where each aj is a nonnegative integer that is less than 60, but at first there were 
problems when one or more of the numbers aj  was equal to zero, and eventually 
place holders were used in positions where we would insert a zero today.  



However, as noted on page 23 of Burton, there is nothing to indicate that any 
such place holder was “regarded … as a number by itself that could ever be used 
for computational purposes.”  
 

Egyptian fractions 
 
The differences between the Egyptian and Mesopotamian representations for 
fractions were far more significant.  For reasons that are not really understood, 
the Egyptians expressed virtually all fractions as finite sums of ordinary 
reciprocals or unit fractions of the form 
 

.)(
111

etc
cba

+++
 

 
where no denominator appears more than once in the expansion.  Of course 
this restriction leads to complicated expressions even for many fairly simple 
fractions, and the discussion and tables on pages 37–38 of Burton give 
expansions for a long list of fractions with small denominators. 
 
As noted on page 41 of Burton, every rational number between 0 and 1 has an 
Egyptian fraction expansion of this type.  Perhaps the most widely known 
method for finding such expressions is the so-called greedy algorithm due to 
the thirteenth century Italian mathematician Leonardo of Pisa (better known as 
Fibonacci).  A description of this method and a proof that it works are 
reproduced below, this account is slightly adapted from the online site 
 
<http://www.mcs.surrey.ac.uk/Personal/R.Knott/Fractions/egyptian.html#Fibgreedy> 
 
which also has information on several other aspects of Egyptian fractions.   
 
Before proving the general result on Egyptian fraction expansions, it seems 
worthwhile to make some general comments.  By the early thirteenth century 
mathematics had outgrown the need for Egyptian fraction expansions to do 
arithmetic with fractions.   However, there was enough remaining interest for a 
leading mathematician of the day to give a logically rigorous procedure for finding 
such expansions.  Thus a problem originally arose in a “practical” context had 
interesting features that generated further study of the general topic for their own 
sake.  This happens frequently in many areas of human activity, but it is 
particularly fundamental to mathematics; it was already apparent in the Rhind 
papyrus from the nineteenth century B. C. E.  The reasons for pursuing such 
mathematical questions for their own sake frequently go beyond simple curiosity 
and enjoyment.  Very often a topic that originally seemed interesting in itself 
eventually figures in a serious mathematical inquiry.  Further discussion of this 
appears in an article by David Singmaster (The unreasonable utility of 
recreational mathematics), which is available at the following online site: 
 

http://anduin.eldar.org/~problemi/singmast/ecmutil.html 



 
As an indication of how Egyptian fraction expansions have continued to generate 
mathematical interest we mention an unsolved problem raised by the celebrated 
mathematician Paul Erd�V������ –1996) and E. G. Straus�  Suppose that n is an 
odd number which is greater than or equal to 5.  Is it always possible to write the 
fraction  4/n  as a sum of three unit fractions? 
 
Some results on Egyptian fraction expansions that are related to this problem are 
discussed in an addendum to this section; i.e., document  history01a.pdf  
(or the alternate version  history01a.ps), which is available in the course 
directory � 
 

http://math.ucr.edu/~res/math153  
 
Finding Egyptian fraction expansions.   We now return to a statement and 
proof of the Greedy Algorithm for expressing an arbitrary fraction as a sum of unit 
fractions. 
 
FIBONACCI'S METHOD A. K. A. THE GREEDY ALGORITHM:   This method and a proof 
are given by Fibonacci in his book Liber Abaci produced in 1202 that introduced 
the rabbit problem involving the Fibonacci Numbers.   We begin by noting that 
 

• T / B    <   1   and  
• if T  =  1 the problem is solved since T / B is already a unit fraction, so  
• we are interested in those fractions where T   >  1.  

 
The method is to find the biggest unit fraction we can and take away from T / B 
and hence the other name for this process – the Greedy Algorithm. 
 
With what is left, we repeat the process. We will show that this series of unit 
fractions always decreases, never repeats a fraction and eventually will stop. 
Such processes are now called algorithms and this is an example of a greedy 
algorithm since we (greedily) take the largest unit fraction we can and then 
repeat on the remainder.  
 
Let' s look at an example before we present the proof: 
 

521/1050. 
 
Now 521/1050  is less than one-half (since 521 is less than a half of 1050) but it is 
bigger than one-third. So the largest unit fraction we can take away from  521/1050 
is 1/3:  
 

521/1050    =    1/3   +   R  
 
What is the remainder?  To find it we simply subtract one fraction from the other: 



 
521/1050    –    1/3   =   57/350  

 
So we repeat the process on 57/350 : 
 
This time the largest unit fraction less than 57/350 is 1/7 and the remainder is 1/50. 
 

How do we know it is 7?  Divide the bottom (larger) number, 350, by the 
top one, 57, and we get 6.14 ... .  So we need a number larger than 6 
(since we have 6 + 0.14  ...  ) and the next one above 6 is 7.  
 

So  521/1050   =   1/3  +  1/7  +  1/50 .  The sequence of remainders is important in the 
proof that we do not have to keep on doing this for ever for some fractions T / B:  
 

521/1050,   57/350,   1/50  
 
In particular, although the denominators of the remainders are getting bigger, the 
important fact that is true in all cases is that the numerator of the remainder is 
getting smaller. If it keeps decreasing then it must eventually reach 1 and the 
process stops.  
 
A PROOF:  Now let' s see how we can show this is true for all fractions T / B. We 
want  

T / B    =    1/u1  +  1/u2  +  ...  +  1/un  

 
where u1  <  u2  <  ...  <  un .   Also, we are choosing the largest u1 at each stage. 
 
What does this mean?  It means that 1/u1   <   T / B, but also that 1/u1 is the 
largest such fraction.  For instance, we found that 1/3 was the largest unit fraction 
less than 521/1050. This means that 1/2 would be bigger than 521/1050.  
 
In general, if 1/u1 is the largest unit fraction less than T / B then  
 

1/(u1 – 1)   >   T / B. 
 
Since T  >  1, neither 1/u1 nor 1/(u1 – 1) is equal to T / B.   What is the 
remainder?  It is 
  

T / B  –  (1/u1)    =    (T⋅⋅u1  –  B) / (B⋅⋅u1)  
 
Also, since 1/(u1–1)  >   T/ B, then multiplying both sides by B we have  
 

B / (u1 – 1)    >    T  
 
or, multiplying both sides by (u1 – 1) and expanding the brackets, then adding T 
and subtracting B to both sides we have:  



 
B     >    T ⋅⋅ (u1 – 1) 
B     >    T ⋅⋅ u1  –  T 

T      >     T ⋅⋅ u1  –  B 
 
Now T⋅⋅u1 – B was the numerator of the remainder and we have just shown that it 
is smaller than the original numerator T. If the remainder, in its lowest terms, has 
a 1 on the top, we are finished.  Otherwise, we can repeat the process on the 
remainder, which has a smaller denominator and so the remainder when we take 
off its largest unit fraction gets smaller still.  Since T is a whole (positive) number, 
this process must inevitably terminate with a numerator of 1 at some stage.  
 
This completes the proof of the following statements: 
 

• There is always a finite list of unit fractions whose sum is any given 
fraction T / B  

• We can find such a sum by taking the largest unit fraction at each stage 
and repeating on the remainder (the greedy algorithm)  

• The unit fractions so chosen get smaller and smaller (and so all are 
unique)  

 
DIFFERENT REPRESENTATIONS FOR THE SAME FRACTION:  We obviously have    
3/4   =   1/2 + 1/4 , but there are also other Egyptian fraction forms for 3/4 .  For 
example we have 3/4 as 1/2 + 1/5 + 1/20  and  1/2 + 1/6 + 1/12  and 1/2 + 1/7 + 1/14 + 1/28.  
One could continue in this manner, but instead of doing so we shall discuss the 
underlying general principle: 
 
EACH FRACTION BETWEEN 0 AND 1 HAS AN INFINITELY MANY EGYPTIAN FRACTION 
REPRESENTATIONS:  We begin with an absolutely trivial observation:  
 

1    =    1/2  +  1/3  +  1/6 
 

By the Greedy Algorithm we know that every fraction T/B as above has at least 
one Egyptian fraction expression.  This will be the first step of a proof by 
induction.  Suppose that we have k distinct expressions as an Egyptian fraction 
for some positive integer k.  To complete the inductive step we need to construct 
one more expression of this type for T/B.   
 
Among all the k given Egyptian fraction expansions there is a minimal unit 
fraction summand 1/m.  Choose one of these expansions  
 

T / B    =    1/u1  + 1/u2  +  ...  + 1/un 
 

such that un  =  m. Then we may use the trivial identity above to obtain the 
following equation:  



T / B    =    1/u1  + 1/u2  +  ...  + 1/un–1 +  1/(2⋅un)  +  1/(3⋅un)  + 1/(6⋅un)  
 
We claim this expression is different from the each of k expressions that we 
started with.  To see this, observe that the minimal unit fraction summand is 
equal to 
  

1/(6⋅un)      =    1/(6⋅m)  

 
but the minimal unit fraction summand for each expression on the original list is 
at least  1/m .  Therefore we have obtained an expression that is not on the 
original list of k equations, which means there are at least k+1 different 
expressions for T / B and thus completes the proof of the inductive step. 
 
In contrast, one can also prove that for a fixed positive integer L there are only 
finitely many ways of expressing T / B as a sum of at most unit fractions.  The 
proof of this by mathematical induction will be left to the exercises. 
 
 

Babylonian fractions 
 
We begin with some standard terminology that may be misleading in some 
respects but is generally used and convenient.  Mesopotamia had a succession 
of dominant kingdoms from the dawn of civilization through the Persian conquest 
in 538 B. C. E.  In discussions of the ancient mathematical history for this region, 
it is customary to use the term “Babylonian mathematics” for contributions during 
the period from approximately 2000 B. C. E. through the Persian conquest. 
 
As one might guess from the present day hierarchies of hours/minutes/seconds 
and degrees/minutes/seconds, Babylonian mathematics extended its 
sexagesimal numbering system to include representations for fractions.  This 
crucial step gave Babylonian mathematics a huge computational advantage over 
Egyptian mathematics and allowed the Babylonians to make extremely accurate 
computations; their methods and results were unsurpassed by other civilizations 
until the Renaissance in Europe, nearly nineteen centuries after the Persian 
conquest.  
 
Of course, it is not possible to express every rational number between 0 and 1 as 
a finitely terminating sexagesimal fraction.  For example, the formula for 1/7  in 
sexagesimal form is  
 

0;8,34,17,8,34,17,8,34,17,8,34,17,8,34,17,8,34,17,8,34,17, 
 
where the underlining indicates an infinitely repeating periodic sequence of the 
given numbers.  Babylonian mathematics almost always ignored such 
expressions, and they are conspicuously absent from the tables of fractions that 
are known to exist.   



 
 
 

Mathematical legacies of the early civilizations 
 
Both the Egyptians and Babylonians were quite proficient in using arithmetic to 
solve everyday problems.   Furthermore, both civilizations complied substantial 
tables of values to be used when working problems.  However, the emphasis 
was on specific problems rather than general principles.  In particular, there is no 
evidence of proofs or comprehensive explanations of computational procedures, 
and the general discussions of procedures seemed to be directed at facilitating 
techniques rather than developing understanding.  Given such an empirical 
approach, it was probably inevitable that there are mistakes in some of their 
procedures for finding answers to specific types of problems.  Chapter 2 of 
Burton mentions one specific formula that both cultures got wrong:  Given a 
“nice” quadrilateral ABCD in the plane such that the lengths of sides AB, BC, CD 
and DA are a, b, c and d respectively, the writings of both cultures give the 
following formula for the area enclosed by ABCD: 
 

area     is supposedly equal to    1/4 (a + c) ⋅ ⋅ (b + d) 
 
Further discussion of this estimate for the area appears in Exercise 8 on page 56 
of Burton (see also Exercise 5 on page 75).  In a few cases, one culture found 
the right formula for computing something while the other did not.  One example 
of this sort involves the volume of a frustrum of a pyramid with a square base; 
this is the object formed by taking a pyramid with a square base and slicing off 
the top along a plane that is parallel to the base; the Egyptian formula was 
correct but the Babylonian one was not.  An excellent interactive graphic for this 
figure and some interesting commentary on the Egyptian formula are available 
online at the site 
 

http://mathworld.wolfram.com/TruncatedSquarePyramid.html 
 
and the related site for the pyramidal frustrum listed there is also worth viewing. 
 
Both the Egyptian and Mesopotamian civilizations developed numeration 
systems (with fractions) that were highly adequate for their purposes in many 
respects, but in each case there were difficulties with their approaches to 
fractions.  In Egyptian mathematics, the most obvious problem concerned the 
clumsiness of the manner in which they wrote fractions, while in Babylonian 
mathematics there was the problem of dealing accurately with fractions T/B for 
which the reduced version’s (i.e.,  T and B have no common factors except +1 
and –1) denominator B is divisible by a prime greater than 5.  More generally, the 
general lack of clear distinctions between approximate and actual values was 
also a problem for both Egyptian and Babylonian mathematics.   
 



 
 
 

Achievements and weaknesses of Egyptian mathematics 
 
The Egyptian civilization was the first known to develop systematic calendars 
based upon lunar and solar cycles, maybe as early as the fifth millennium B. C. 
E.  Some of their numerical estimation procedures were quite good and 
elaborations of a few are still used today for some purposes (e.g., the rule of 
false position), and Egyptian mathematics was clearly able to approximate 
square roots effectively.  The existing documents and monuments all indicate a 
more extensive understanding of geometry than in Babylonian civilization.  In 
particular, as noted before the Egyptians knew how to compute the volume of a 
truncated pyramid (see the bottom of page 52 in Burton) but the Babylonian 
formula was incorrect.  Although it is clear that Egyptian geometry provided 
valuable input to the later work of Greek geometers, evidence also suggests that 
the extent of these contributions was substantially less than classical Greek 
writers like Herodotus indicated.  
 
Egyptian arithmetic was based very strongly on addition and subtraction, and 
both multiplication and division were carried out by relatively awkward additive 
procedures.  For example, if one wanted to multiply two positive integers A and 
B, this would begin with adding A to itself to form 2 A, adding 2 A to itself to form 
4 A, and so on until one reaches the largest power of 2 such that 2 k <  B.  The 
next step would amount to finding the base two expansion of B as  
 

1   +   2   +   …   +   2 k 
 
and the final step would be to add all the numbers 2 p A such that 2 p is a term 
which appears in the binary expansion of B.  Of course, computing this way is 
extremely clumsy by today’s standards, but clearly the Egyptians were able to 
live with this and use it very successfully for many purposes. 
 
One particularly noteworthy feature of Egyptian mathematics is that it apparently 
changed very little over a period of approximately two thousand years.   
 

Achievements and weaknesses of Babylonian mathematics 
 
The sexagesimal numeration system provided an extremely solid foundation for 
doing all sorts of calculations to a very high degree of accuracy, and Babylonian 
mathematics realized this potential with an extensive collection of algorithms.  In 
particular, their method for solving quadratic equations is equivalent to the 
quadratic formula that we still use in many situations.   Babylonian mathematics 
was also quite proficient in solving large classes of cubic equations and systems 
of two equations in two unknowns.  There were also other achievements related 
to algebra, but here we shall only mention the existence of evidence that 



Babylonian mathematics had some primitive understanding of trigonometric, 
exponential and logarithmic functions (however, we should stress that the extent 
of this understanding was extremely limited). 
 
Although it appears that Egyptian mathematics understood at least some 
important special cases of the Pythagorean Theorem, the first known recognition 
of the Pythagorean Formula appears in Babylonian mathematics; in keeping with 
our earlier comments, there ware no attempts to justify the formula.  However, 
the Babylonians also studied integral solutions of the Pythagorean Equation 
 

a 2   +   b 2    =    c 2  
 
extensively; e.g., this is evident from the cuneiform tablet called Plimpton 322.   
 
We have mentioned evidence that Egyptian geometry was relatively well–
developed.   It is more difficult to assess Babylonian achievements in this area, 
but the evidence does show a high level of proficiency in making geometric 
measurements of various kinds.  
 
Babylonian mathematics had a particularly strong impact on observational 
astronomy, including the traditional notation for locating heavenly bodies and 
prediction of solar and lunar eclipses.   
 
Some weaknesses of Babylonian mathematics were already mentioned above. 
The lack of negative numbers is also worth mentioning, both for its own sake and 
its relation to another deficiency:  Babylonian mathematics only described one 
solution for a quadratic equation rather than two.  Of course, even if one ignores 
negative numbers there are many cases for which a quadratic equation has two 
positive roots.  Given that high school level second year courses in algebra often 
contain exercises to illustrate the pitfalls of equations involving square roots, 
recognizing only one root of a quadratic equations can clearly be a nontrivial 
problem in some situations. 
 
We conclude this unit with an important caution about the preceding discussion.  
Although there is no direct evidence of proofs or comprehensive explanations of 
computational procedures, describing mathematics in early civilizations as a 
purely utilitarian subject  –  which was devoid of logical structure, deductive 
proofs, generalizations or abstractions  –  is probably an oversimplification.  
Certainly none of these features appeared as explicitly or forcefully as they do in 
Greek mathematics, but the evidence also suggests some forms of these 
features must have been at least implicit.  Among the arguments suggesting this 
are (1) descriptions of numerous problems that resemble each other quite closely 
and solving them by similar methods,  (2) performing arithmetic operations with 
different types of measurements – for example, adding a length to an area.  As 
noted before, our information on Egyptian and Mesopotamian mathematics is 
extremely spotty and there is plenty of room for speculation in many directions. 


