
 

 

3. Euclid and the Elements 
 
 

(Burton,  4.1 – 4.3) 
 
 
Alexander the Great’s political empire fragmented shortly after his death in 323 B. C. E., 
but the cultural effects of his conquests were irreversible and defined the course of 
future civilization.  Greek culture became an established framework for many areas of 
knowledge in the Mediterranean world, and mathematics was a particularly important 
example.  The founding of Alexandria in Egypt during and immediately after Alexander’s 
time reflects this change very clearly, for the city became a center of learning for the 
entire Hellenistic culture. 
 
Euclid of Alexandria (325 – 265 B. C. E.) was one of the first mathematicians based in 
that city.  Of course, he is mainly known for organizing and presenting the basics of 
mathematical knowledge at the time into the thirteen volume work called the Elements, 
and because of this monumental work he is arguably the best known of all the ancient 
Greek mathematicians.  
 

The achievements and influence of the Elements 
 
Few books ever written have circulated as widely around the world as Euclid’s Elements, 
and much has been written about the advances in knowledge it represents and its 
continued significance ever since it was written.   Not surprisingly, some discussions of 
the Elements are more accurate and objective than others.  Therefore we shall begin by 
describing the features of the Elements that are generally regarded as the reasons it has 
remained such an important work for such a long period of time.   
 
As noted before, the purpose of the Elements was to give a systematic account of many 
basic and major mathematical results that were known at the time.  The work was not 
meant to be a complete account of mathematical knowledge at the time; in the words of 
Proclus, the work covers “those theorems whose understanding leads to knowledge of 
the rest.” 
 
Most of the material in the Elements had been well known to the Greeks before Euclid’s 
time.  However, the overall organization of the Elements was due to Euclid, and he 
personally created many of the proofs that appear in this work.  In some cases these 
arguments and formulations probably filled gaps or weak spots in theorems and proofs 
that were known at the time. 
 
The single most important aspect of the Elements is its logical organization, which 
begins with definition for important concepts, formulates some basic properties of these 
concepts that will be assumed, and uses deductive logic to prove new conclusions or 
theorems.  These results were presented in a formally logical order, with each proof 
depending only on the results and assumptions that had appeared previously in the 
work.   Even if a statement appeared to be completely obvious, the rigorous logical 
structure demanded a formal proof. 
 
This axiomatic method of approaching a subject is the standard for scientific reasoning 



 

 

that is still used today, and it has also been used in a wide range of other disciplines 
over the ages.   In particular, many philosophical writings over the centuries have used 
the Elements as model for their reasoning; some particularly notable examples include 
Thomas Aquinas and numerous rational philosophers especially the seventeenth and 
eighteenth centuries (e.g., very explicitly in the writings of B. Spinoza).  Given the 
influence of the Elements on future work in many areas of human knowledge, it is not 
surprising that some view it as the most successful textbook ever written.   
 
Euclid’s formulations of various mathematical results quickly superseded some earlier 
ones and became established as definitive in many cases; with the passage of over 
2300 years, some of his versions have in turn been superseded by others for various 
reasons, but there are also many instances where his formulations and arguments are 
still the preferred ones today.  This is particularly true in elementary geometry, but it is 
also true in many parts of elementary number theory.   In each subject, quite a few of 
Euclid’s methods and ideas are still present to some extent, not for any sentimental 
value they may have but simply because they are still the most clear and direct ways to 
consider certain topics. 
 
Euclid’s logical framework for geometry is very concise and powerful, and his work was 
long believed many to provide an absolutely true description of the physical world and 
everything that one needs to understand it.  Questions along these lines attracted a 
great deal of attention from philosophers, especially during the seventeenth and 
eighteenth centuries, but several distinct mathematical developments during the 
nineteenth and twentieth centuries have shown that the geometric structure of the 
physical world is too complex to be described entirely and precisely in Euclidean terms.  
However, small pieces of the physical world often appear to obey the rules of Euclidean 
Geometry up to a high degree of accuracy. 
 
Our knowledge of Euclid himself is extremely limited, and most of it comes from the 
writings of Proclus.   There are some often repeated anecdotes about him that appear in 
the paragraph beginning at the bottom of page 137 in Burton. 
 

Subjects covered in the Elements 
 
We have already mentioned that there are thirteen parts to Euclid’s Elements (formally 
called books, but they really are more like individual chapters of a single book).  A more 
detailed table of contents for the Elements is available online at the site 
 

http://aleph0.clarku.edu/~djoyce/java/elements/toc.html 
 
(in fact, the latter contains links to the entire Elements).  We shall summarize some of 
the main topics covered in this work. 
 
The first few books treat basic plane geometry, and the material in these books has 
served as the core content of geometry courses for most of the past 2300 years.  In 
particular, the first two books cover the basic properties of rectangles and triangles.  A 
great deal of the second book is devoted to geometric proofs of results that we now view 
as essentially algebraic; this reflects the philosophical problems that ancient Greek 
mathematicians had with irrationals.  It appears that much of the material in Book I was 
originally developed by Thales and the Pythagoreans, although in some cases the 
proofs seem clearly due to Euclid.  There is a lengthy commentary on the contents of the 



 

 

first two books on pages 139 – 161 of Burton; we shall say more about several aspects 
of this material later.  Pages 157 – 160 are devoted to the so-called golden section 
problem that has preoccupied mathematicians and others since the time of the ancient 
Greeks.  In geometric terms, given a segment AB, the objective is to find a point C 
between A and B such that the lengths of segments satisfy |AC|   >   |CB| and the 
following proportionality relation: 
 

|AC| / |AB|    =     |BC| / |AC| 
 
Algebraically this translates into a quadratic equation for x  =  |AC| / |AB| ,  specifically 
 

x2   +   x   –   1     =     0 
 
and if one solves this equation for the positive root the answer is the number 
 

x    =    ½ ( sqrt (5) – 1 )    =    0.61803398874989484820458683436564 …    
 
which is one less than the number • (phi) that plays a central role in a recent popular 
novel (D. Brown, The Da Vinci Code, Doubleday, 2003, ISBN 0–385–50420–9).   The 
discussion of Burton also explains the relevance of this number to constructing a regular 
pentagon by unmarked straightedge and compass. 
 
The third and fourth books study circles and their relations to other geometric figures.   
Much of this material was apparently known to Hippocrates of Chios.  The following 
result illustrates the types of questions studied in Book III: 
 
The measure of an inscribed angle is equal to one-half the degree measure of its 
intercepted arc. 

In the illustration below, the intercepted arc is the one inside angle ∠∠ABC. 

 
(Source :   http://jwilson.coe.uga.edu/emt725/ReviewCir/ReviewCir.htm ) 

 



 

 

 
The final result of Book III illustrates how far such questions are pursued: 
 
 
Suppose that we are given a circle, a point A outside the circle and two lines through A 
such that one is tangent to the circle at B and the other meets the circle at two points C 
and D such that C is between A and D.  Then the lengths of the segments satisfy the 
following equation: 
 

|AB| 2    =     |AC| ⋅⋅ |AD| 
 

 
 
Book IV looks more closely at questions like finding circles passing through all three 
vertices of a triangle (circumscribing a circle about a triangle), finding circles tangent to 
all three sides of a triangle (inscribing a circle in a triangle), and constructions for certain 
geometrical figures by unmarked straightedge and compass.  The book ends with the 
construction of a regular 15-sided polygon using only these tools. 
 
Book V covers material that was relatively new at the time.  We had already mentioned 
that the irrationality of sqrt (2) was troublesome for Greek mathematicians, and an 
effective way of working with such numbers was not found until Eudoxus of Cnidus 
developed an approach to analyzing incommensurable proportions by means of rational 
numbers.   One can rephrase his approach by saying that a geometrical magnitude x is 
characterized by the following two pieces of rational data: 
 

1. The set of all positive rational numbers strictly less than x. 
2. The set of all positive rational numbers strictly greater than x. 

 
We shall discuss this and other aspects of the Condition of Eudoxus in an addendum to 
these notes.  For our present purposes it will be enough to state his criterion for 
concluding that two ratios of geometrical magnitudes are equal: 
 
The condition of Eudoxus.  Two ratios of (positive real) numbers a/b and c/d are equal 
if and only if for each pair of positive integers m and n we have the following: 
 

ma  <   nb     implies     mc  <   nd     and       ma  >   nb     implies     mc  >   nd 
 
It is worthwhile to stop for a minute and consider what these mean.  The first statement 
is equivalent to saying that for every pair of positive integers m and n we have 
 

a/b  <   n/m     implies     c/d  <   n/m 
 
while the second is equivalent to saying that for every pair of positive integers m and n 
we have  



 

 

 
     a/b  >   n/m     implies     c/d  >   n/m .  

 
The first of these amounts to saying that if r is a rational number greater than a/b then r 
is also greater than c/d.  As noted in addendum 3.A to these notes, the first condition 
implies that a/b  ≥  c/d.  On the other hand, the second amounts to saying that if r is a 
rational number less than a/b then r is also less than c/d.  As noted in the addendum, 
this implies that a/b  ≤  c/d.  If we put these together we conclude that a/b must be equal 
to c/d. 
 
In Book VI the Eudoxus theory of proportions for incommensurables is applied to 
geometrical questions like the classical similarity theorems for triangles.   This was a 
major advance at the time, for before the discoveries of Eudoxus the Greeks were only 
able to prove similarity theorems for triangles in the commensurable case:  For a pair of 
triangles 

�
 ABC and 

�
 DEF, this means that the common ratio of the lengths of the 

corresponding sides 
 

|AB| / |DE|    =    |AB| / |DE|    =    |AB| / |DE| 
 
is a  rational number.   Greek geometers were able to attack the similarity problem 
effectively using the following fact, which one might call the Notebook Paper Theorem. 
 
Suppose that we are give a family of distinct parallel lines P1, P2, … and two transversals 
L and M that are not parallel or identical to these lines.  For each k let Ak be the point at 
which L and Pk intersect, and let Bk be the point at which M and Pk intersect.  If all the 
segments |AkAk+1| have length a, for some fixed a, then all the segments |BkBk+1| have 
length b for some fixed b. 
 

 
 

 
Here is an illustration of how one can use the Notebook Paper Theorem in a simple case 
of similar triangles.  The picture below is taken from the following site: 
 

http://www.mccallie.org/myates/chapter_8.htm 

 
 



 

 

 
 
Let’s suppose we know that the lines AB and DE are parallel, so that the corresponding 
angles of �  ABC and �  DEC have equal measurements, and let’s suppose also that 
the lengths of the segments AC, DC and EC are as given in the picture.   The basic 
similarity theorem predicts that the length of the fourth segment BC is 4.5 as suggested 
in the picture, but how do we reach this conclusion?  One way to do so is to construct a 
line through the midpoint X of the segment DC that is parallel to AB and DE.  This line 
must meet side BC at some point Y.  We then know that the lengths |CX|, |XD| and |DA| 
are all equal to 1, and therefore the Notebook Paper Theorem implies that the lengths 
|CY|, |YE| and |EB| are all equal.  Since the length |EC| is equal to three, it follows that 
this common length for the three segments on BC must be 1.5, and therefore the length 
of BC must be equal to 4.5.   More generally, suppose now that the lengths of AC and 
DC were m and n respectively for suitable positive integers m and n.  In this case one 
would construct a whole family of n mutually parallel lines containing AB and DE such 
that the segments they cut off on AC all have length equal to 1.  If the lengths of EC and 
BC are equal to p and q respectively, then the same sort of reasoning will show that   q   
=   p ⋅⋅ (m / n), or equivalently q / p   =   m / n. 
 
Of course this argument breaks down completely if the lengths of AC and DC are sqrt(2) 
and 1, but in these cases it is still possible to prove that |BC|   =   sqrt (2) ⋅⋅  |EC|  by 
using the Condition of Eudoxus.   Further discussion of such a proof appears in 
addendum 3.B to these notes. 
 
Books VII through IX of the Elements shift to an entirely different subject; namely, 
number theory.   Here is a partial list of topics: 
 

1. Prime numbers 
2. Factorizations of positive integers as products of primes 
3. Finding greatest common divisors of numbers using long division of 

integers (a = bq + r, where r lies between 0 and q – 1) 
4. Geometric progressions and their sums 
5. The existence of infinitely many prime numbers 
6. Perfect numbers, including Euclid’s construction of even perfect numbers 

 
A fairly detailed description of key points in these books is given on pages 163 – 174 of 
Burton. 
 
Book X is an extensive and well organized discussion of irrational numbers, and it is 
almost certain that it went well beyond previous efforts to understand irrationals.  The 
first proposition in this book is in fact a simple but important observation about limits.  In 
modern language, it says that if we are given a sequence of positive numbers an such 



 

 

that an+1 <  an / 2, then the limit of the sequence an is equal to zero.  This result plays a ���������
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bounded by a circle whose radius is equal to r (this result is proved in Book XII).   
 
The final three books (XI – XIII) deal mainly with solid geometry.  Book XI extends basic 
notions of plane geometry to three dimensions; e.g.,   perpendicularity and parallelism 
for lines and planes in space, and the various types of solid angles (dihedral, trihedral, 
etc,) formed by planes.  Book XII goes in a quite different direction, using methods of 
Eudoxus to find areas and volumes of solid figures like cones, pyramids, cylinders and 
spheres; this book also contains a proof of t ,�-!.%/ 0�1�2�1 / 3 / 3�-�/4.%5
3�0'6�2 /87 9 +

 r2.  Finally, 
Book XIII describes the five regular Platonic solids.  The exposition in this final book is 
less rigorous than in the preceding ones, and some have suggested that it was added 
afterwards by Euclid or perhaps even someone else.  Manuscripts claiming to be later 
books of the Elements exist, but there is a general agreement that these were not written 
by Euclid. 
 

Limitations of the Elements 
 
Despite the important achievements of the Elements, this work is not perfect.  While a 
study of its defects is appropriate, one should also remember that without the model for 
rigorous logical investigation that the Elements provided, it is questionable whether such 
weak points would have ever been discovered.   It is particularly noteworthy that, with a 
few exceptions, the logical bugs in the Elements were not discovered until the nineteenth 
century. 
 

Man is doomed to err so long as he is striving.   –   Goethe, Faust 
 
Some mathematical historians have criticized the Elements for lack of motivation for the 
subject matter and a similar lack of analyses of the proofs.  Such issues can be debated 
at length (certainly its usefulness as an effective textbook over many centuries seems 
beyond question), but we shall concentrate on strictly mathematical issues here. 
 
Although the Elements devotes considerable effort to formulating careful definitions, at 
the very beginning it attempts to define too much and later it does not give precise 
definitions of some basic ideas that are used throughout the work.   In mathematics it is 
not possible to define everything in terms of objects; the chain of definitions must stop 
somewhere and certain concepts must be taken as primitive or undefined.  For example, 
this applies to the notions of point, lines and planes in most axiom systems for Euclidean 
geometry; even in cases where one can define some of these, say lines and planes, in 
terms of other concepts, the latter are generally undefined.  A reader usually has (and 
indeed should have) some intuition about what these concepts represent physically, but 
none of this can appear in the formal mathematical setting.   Further comments about 
definitions in the Elements appear in the third full paragraph on page 139 of Burton and 
the second full paragraph on page 141. 
 
Euclid’s work frequently discusses concepts like two points lying on the same or 
opposite sides of a line, one point on a line being between two others on the same line, 
a point lying in the interior of an angle or triangle, and so forth.  None of these notions is 
described formally in the Elements, and the corresponding lack of postulates about the 
properties of these concepts leaves some of the arguments incomplete.   We have 
already mentioned two results from Book III whose proper formulation requires a notion 



 

 

of betweenness for points and a precise description of the interiors of angles.  Burton 
mentions another instance where interiors are needed in Proposition 16 from Book I (the 
Exterior Angle Theorem; see pages 145 – 146). It is possible to make such ideas 
logically rigorous by adding additional definitions and assumptions; we shall discuss this 
later. 
 
Insisting on filling the logical gaps might initially seem needlessly pedantic.  No one 
disputes the basic correctness of the geometric propositions we are considering, so one 
might ask how much it matters that concepts like betweenness, angle interiors, and 
points lying on the same or opposite sides of a line were not discussed rigorously.  
Perhaps this is a no harm, no foul situation.  One simple response is that insufficient 
attention to such concepts can lead to arguments that look very much like those in the 
Elements but have ridiculously false conclusions.  On of the best known fallacies is a 
standard and apparently reasonable “proof” due to W. W. Rouse Ball, which claims to 
show that every triangle is isosceles.   If accepted standards of reasoning lead to such 
an absurd conclusion, the reliability of any conclusions obtained by such methods must 
be viewed with suspicion.  Here is an excellent online reference for the purported proof 
that every triangle is isosceles and an analysis of its weak points; the same site also 
contains a few other geometric fallacies of a similar nature. 
 

http://www.jimloy.com/geometry/every.htm 
 
As noted in the latter, finding the mistake in the argument requires a patient examination 
of every assertion in the proof related to betweenness and the other notions mentioned 
above, and in fact the mistake results from using an incorrectly drawn picture to reach 
false conclusions. 
 
A second source of difficulties in the Elements is its use of the so-called “principle of 
superposition” which says that one can move objects without changing their shape.  
Apparently Euclid himself was uncomfortable with the idea of proof by superposition, 
which was used to prove the Side–Angle–Side congruence theorem for triangles.  This 
method was only used at one other point (the proof of the Angle–Side–Angle theorem) 
even though it could have been used equally well in other instances.  The logical 
framework for the Elements says nothing about moving figures around in the plane.  
Many, perhaps most, axiom systems for Euclidean geometry avoid this problem by 
assuming the Side–Angle–Side congruence theorem; in cases where this is not done, 
some other assumption is needed in order to prove this result.  The corresponding 
discussion in Burton begins with the last paragraph on page 144. 
 
Surprisingly, the first logical difficulty in the Elements appears in the proof of the very first 
result on constructing an equilateral triangle with a given base.  The basic idea is simple: 
Starting with a segment AB, one constructs a circle with center A and radius AB, and 
then one also constructs a circle with center B and radius AB.  Take a point C where 
these circles meet, and this will be the third vertex of an equilateral triangle which has 
AB as one of its sides. 
 
The problem with this argument is that none of the basic assumptions at the beginning of 
the Elements says anything about intersecting circles.   In order to complete the proof of 
the very first proposition, one needs a result saying that if one circle contains one point 
inside another circle and one point outside that circle, then the two circles have a point in 
common.  A complete mathematical analysis of the situation is a bit too complicated to 



 

 

describe here, so we shall simply note that it is impossible to prove what is needed on 
the basis of what was assumed.   The first two paragraphs on page 142 of Burton 
discuss this further. 
 
In view of these, it is rather ironic that Euclid had previously been criticized for something 
that was not a mistake; namely, the relatively complicated Fifth Postulate: 
 

5. That, if a straight line falling on two straight lines make the interior 
angle on the same side less than two right angles, the two straight lines, 
if produced indefinitely, meet on that side on which are the angles less 
than two right angles.  

 
It is particularly significant that this assumption is not needed or used until Proposition 27 
of Book I and that a substantial amount of material was developed up to that point.  The 
assumption was avoided in the logical progression until it was no longer possible to do 
so.  For centuries mathematicians and others felt that this fifth postulate, which was far 
more complicated than any of the others, was a problem that had to be corrected.  They 
felt that it was surely not necessary to include such a lengthy assumption when the 
others were so short and crisp.  Subsequent studies found equivalent assumptions that 
could be stated more simply (e.g., J. Playfair’s seventeenth century version: Given a line 
and a point not on it, there is a unique parallel line to the original line passing through the 
given point), but none of these appeared to be a consequence of the other assumptions 
despite many deep and innovative investigations.  When several mathematicians in the 
nineteenth century discovered that the fifth postulate could not be derived as a logical 
consequence of the other assumptions, or indeed of any version that is modified to 
overcome the logical inadequacies mentioned above, it became clear that the need for 
this postulate was an extremely important insight on Euclid’s part.  One important work 
leading to the discovery of the fifth postulate’s independence was due to G. Saccheri 
(1677 – 1733), the title of which claims this work vindicates Euclid by proving the fifth 
postulate from the others.  Despite some mistakes at the end, this work was an 
important contribution, but even so the claim of vindication is somewhat ironic.  The real 
vindication for Euclid is that the fifth postulate is logically indispensable rather than 
logically redundant. 
  
Finally, it seems worthwhile to mention a point that is not really a logical mistake but 
apparently a logical insight that was missed.  Proposition 5 of Book I proves that if we 
are given an isosceles triangle ∆∆ ABC in which |AB|   =   |AC|, then the measures of the 
angles ABC and ACB are equal.  Euclid’s proof is described on pages 143 – 144 of 
Burton, and it is a fairly lengthy argument which requires the construction of auxiliary 
points and line segments.  This argument contrasts very sharply with the very short and 
simple proof discovered by Pappus of Alexandria about 600 years later (see page 145 of 
Burton).   Euclid’s argument involves the application of congruence theorems to two 
separate triangles, and Pappus’ argument involves the application of a congruence 
theorem to a single triangle with the vertices corresponding in a specific “nonstandard” 
way:  A corresponds to itself, B corresponds to C, and C corresponds to B. 
 

Repairing the logical deficiencies  
 
Given the importance of the Elements, it is not surprising that many nineteenth century 
mathematicians worked to bring the material up to modern logical standards.   The most 
widely known approach was given by D. Hilbert (1862 – 1943) at the end of the 



 

 

nineteenth century.  It requires six undefined or primitive concepts (points, lines, planes, 
betweenness, congruence of segments, congruence of angles) and 21 separate 
postulates.  Here is an online reference: 
 

http://en.wikipedia.org/wiki/Hilbert' s_axioms 
 
This axiom system reflects Euclid’s approach, which involves minimal use of number 
systems.  However, if one is willing to accept the real number system as given, then it is 
possible to reformulate the axioms in terms of points, lines, planes, distance between 
points, and angular measure with fewer assumptions, and with this system of axioms 
many proofs become much simpler.   The basic ideas for this were formulated by G.  D. 
Birkhoff (1884 – 1944) during the second quarter of the twentieth century, and Birkhoff’s 
specific axioms may be found in the link Euclid' s Mathematical System at the following 
online site: 
  

http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/hyprgeom.html 
 
The link above also has a listing of Hilbert’s axioms. 
 

Other works by Euclid 
 
A few other writings of Euclid have also survived, some in fairly complete forms and 
other only in fragments.  The work most closely related to the Elements is called Data, 
which includes numerous further results and problems related to the material in the 
Elements and may be viewed as a sort of supplement to the latter.  Other books treating 
geometrical topics include On Divisions, which describes ways of splitting geometrical 
figures into pieces with prescribed areas, and Phaenomena, which discusses spherical 
geometry as it relates to observations in astronomy.  A book on optics has also survived.  
Several other books have been lost over time; various scholars have attempted to 
reconstruct portions of these lost works, but views on the accuracy of the attempted 
reconstructions are mixed.   
 
Further information on these other works, and the Elements itself, may be found at the 
following online site: 
 

http://www.obkb.com/dcljr/euclid.html 
 
 
 


