
3.C.  Further comments on axioms for geometry 
 
One important feature of the Elements is that it develops geometry from a very short list of 
assumptions.   Although axiom systems like Hilbert’s (or G. D. Birkhoff’s) eliminate the logical 
deficiencies of Euclid’s framework in the Elements, they are certainly far less concise and 
require several additional undefined concepts.   For several reasons it is worthwhile to know 
whether there are alternatives which require fewer undefined concepts and postulates about 
these concepts.  Here are a few: 
 

1. The conciseness of Euclid’s assumptions is one of the most striking features of his 
work, and it illustrates the power of logical deduction very convincingly.  One would 
like a system that is logically rigorous but not so long that it dilutes this impression 
any more than it absolutely necessary. 

 
2. Whenever one makes a list of assumptions, it is fair to ask for some assurance that 

they do not lead to logical contradictions.  Fewer assumptions allow one to study 
such issues of logical consistency more effectively. 

 
3. Notwithstanding the points raised above, for many points it is also desirable to have 

working versions of axiomatic systems that are not so terse that they are needlessly 
difficult or awkward to handle.  It is desirable to strike a balance between eliminating 
redundancy and sacrificing clarity.  

 
Initially the second point might be surprising, especially if one views axioms for geometry as 
reflecting the properties of physical space.  However, since the formal setting for deductive 
geometry is an idealization of these properties, it is legitimate to ask for evidence that such 
axioms do not lead to problems like conclusions that logically contradict each other.   In 
mathematics the appropriate evidence is known as a relative consistency proof.  In other 
words, the objective is to prove that the setting for geometry is consistent if our standard 
assumptions for the arithmetic of positive whole numbers are consistent, so that a lack of 
consistency for the geometric axioms would imply deeper problems with our understanding of 
simple arithmetic.  Landmark results of K. Gödel (1906 – 1978) show that one can never be 
absolutely sure that our logical setting for arithmetic is logically consistent, but for thousands of 
years this has proven to be a totally reliable working assumption. 
 
Important note.  In any discussion of simplified axiom systems, it is important to remember that 
one rarely gets something for nothing.  Showing that some axioms are logical consequences of 
others will always require proofs, and some might be extremely long, difficult, or not especially 
well motivated at first glance.  
 
As noted in the main notes for this unit, the axiom systems of both Hilbert and Birkhoff can 
found at the following online site: 
 

http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/hyprgeom.html 
 
Both of these axiom sets give priority to clarity over conciseness.  In fact, the following earlier 
paper by Birkhoff gave an extremely economical list of axioms for Euclidean geometry: 
  



G. D. Birkhoff, A set of postulates for plane geometry (based on 
scale and protractors), Annals of Mathematics (2) 33 (1932), pp. 
329 – 345. 

 
Similarly, an extremely short list of axioms for Euclidean geometry based upon Hilbert’s 
approach is given in the following book: 
 

H. G. Forder, The foundations of Euclidean geometry (Reprint of 
the original 1927 edition). Dover Books, New York, NY, 1958. ASIN: 
B0007F8NLG. 

 
The axioms described below are not quite as terse or strong as those in Birkhoff’s paper, but 
they are in the same spirit as Birkhoff’s axioms described in the online link, and they rely very 
substantially on certain results from Forder’s book.  As in Birkhoff’s approach, the underlying 
idea is that one should use the algebraic and other properties of the real numbers to expedite 
the development of geometry.  In keeping with the modern formulation of mathematics in terms 
of set theory, the axioms for plane geometry begin with a set 

�����������
containing at least two 

elements.  The points in this geometry will simply be the elements of the given set 	�

������	��
Euclidean plane geometry can then be based upon the following six axioms. 
 
AXIOM 1:  

There exist nonempty proper subsets of  	�
�������	  called lines, with the properties that 
each two points belong to exactly one line.  
 

AXIOM 2:  
Corresponding to any two points A, B ∈∈ �����������    there exists a unique nonnegative 
real number �AB �  = �BA � , the distance from A to B, which is zero if and only if A = B. 
 

AXIOM 3 (Birkhoff Ruler Postulate):  
If k is a line and � denotes the set of real numbers, there exists a one-to-one 
correspondence (X �  x) between the points X ∈∈ k  and the real numbers  
x ∈∈ �   such that  
 �

AB
�
     =     � a   –  b �  

 
where  A �  a and B �  b. 
 
 

Digress ion.    Before proceeding we need to define betweenness and convexity for a system 
satisfying the first three axioms.  Given three collinear points A, B, C,  we shall say that  
A ∗ B ∗ C  holds (equivalently, B is between A and C) if  
 �

AC
�
    =     

�
AB

�
   +   

�
BC � . 

 
A subset K of  �!�"�#�$�  is said to be convex if  A ∈∈ K,  C ∈∈ K  and  A ∗ B ∗ C    imply B ∈∈ K.  
Equivalently, this means that if A and C lie in K then so does the whole closed segment joining 
them.  Intuitively, this means that the set has no dents or holes. 
 

 



AXIOM 4 (Plane Separation Postulate):  
For each line k there are exactly two nonempty convex sets  H′′ and H″″  satisfying  
i)  �����������  =    H′′   ∪   k   ∪   H″″ .  
ii) H′′   ∩∩   H″″  = Ø,  H′′   ∩∩   k  =  Ø, and  H″″   ∩∩   k  = Ø.  That is, the three sets are 
pairwise disjoint.  
iii) If  X ∈∈ H′′   and  Y ∈∈ H″″  and [XY]  is the closed segment joining  X  to  Y,  then we 
have  [XY]  ∩∩  k     ≠≠    Ø. 
 

A figure illustrating this axiom is given below.  As in the statement of the third condition, one has  
X ∈∈ H′′   and  Y ∈∈ H″″, while the point Z lies on the same side H′′  as X.  Note in particular that the 
entire segment [XZ]  lies in H′′ . 

 

 
 
 
AXIOM 5 (Planar Congruence Postulate):  

Suppose that we are given two quadruples of points A, B, C, D and A′′, B′′, C′′, D′′ such 
that the following hold: 
 

1. B is between A and C. 
2. B′′ is between A′′ and C′′. 
3. D does not lie on the line containing A, B and C. 
4. D′′ does not lie on the line containing A′′, B′′ and C′′. 
5. We have |AB| =  |A′′ B′′ |, |BC|  =  |B′′ C′′ | and |CD|  =  |C′′ D′′| . 

 
Then   |AD|   =   |A′′D′′ | also holds.   

 
The figure below illustrates the Planar Congruence Postulate; following standard practice in 
elementary geometry, we have marked the corresponding segments that have equal length. 
 

 



 
AXIOM 6 (Euclidean Parallel Postulate, Playfair’s version):  

For a given line k and a point P not on  k, there exists one and only one line  k′′  through  
P  such that  k′′  is parallel to k (in other words, the lines are coplanar but do not have 
any points in common). 

 
Proving that this axiom system actually implies the Birkhoff axioms in the online link is nontrivial 
and beyond the scope of this course; the main point here is that one can write down a set of 
axioms for Euclidean geometry that does not look much more complicated than the stated 
assumptions in the Elements. 

 
General considerations about axioms for geometry 

 
We have already mentioned the question of relative logical consistency.  There are also two 
other basic issues for any set of axioms.  One, which is implicit in the discussion thus far, is 
logical independence of axioms.  If we make a list of three assumptions but the third is a 
logical consequence of the other two, then there is no formal reason to include the third one 
(although there may be psychological reasons for doing so).   Another issue involves the 
completeness of a list of axioms.  This means that any two systems are essentially the same 
for all mathematical purposes.  In the case of our axioms for geometry this would mean the 
existence of a one-to-one correspondence between the sets of points � and � such that
collinear sets of points in �  correspond to collinear sets of points in � , noncollinear sets of 
points in �  correspond to noncollinear sets of points in � , and if the points X and Y in �
correspond to the points A and B in � , then the distances between points satisfy � AB �  = � XY � .  
Frequently one also says that a system of axioms is categorical if it has this sort of uniqueness 
property.   
 
Certainly mathematicians want all axiomatic systems to be (relatively) logically consistent, and 
we have already discussed the desirability of logical independence.  For Euclidean geometry 
one wants a categorical axiomatic system, but there are also many places in mathematics 
where one does not.  For example, the standard rules of arithmetic for addition, subtraction and 
multiplication are axiomatized into an abstract concept called a ring, and one important feature 
of these axioms is that they apply to a vast array of algebraic systems that are quite different 
from each other in many important respects.    We shall discuss consistency, independence and 
completeness for the axioms of geometry below.  The following online references contain further 
information of a general nature: 
 

http://en.wikipedia.org/wiki/Axiomatic_system 
 

http://www.andrew.cmu.edu/course/80-110/math_outline.html 
 
 
Proofs that the axioms for geometry are consistent and categorical appear in the book by Moise 
cited earlier in these notes (see the document on constructions by straightedge and compass).  
Both proofs are based upon standard material from lower and upper level undergraduate 
mathematics course, but the entire arguments are long and sometime messy. 
 
The issue of independence is particularly significant because of the interest in proving Euclid’s 
Fifth Postulate (equivalently, Axiom 6 in our list) from the others.  In the early nineteenth century 
several mathematicians – most notably C. F. Gauss (1777 – 1855), J. Bolyai (1802 – 1860) and 



N. Lobachevsky (1792 – 1856) – concluded independently that one could not prove the Fifth 
Postulate from the others and that it was possible to work out an entire theory of geometry in 
which this postulate is false.  Somewhat later in the same century, E. Beltrami (1835 – 1900) 
confirmed this rigorously by constructing an explicit system consisting of a set ����������	 , with a 
suitable notion of distance between two points and a corresponding family of abstract subsets 
as lines, such that our first five axioms for geometry hold but the sixth, which is equivalent to 
Euclid’s Fifth Postulate, is false.  In particular, Beltrami showed that the axiomatic system given 
by assuming  

1. all of Axoms 1 – 5 as above are true  
2. the final Axiom 6 as above is false 

 
is logically consistent.  Subsequently other models proving the independence of the Parallel 
Postulate were constructed by F. Klein (1849 – 1925) and H. Poincaré (1854 – 1912).   The 
book by Moise also outlines a proof that Poincaré’s model satisfies the same two conditions as 
Beltrami’s. 
 
Given that Axioms 1 – 6 are categorical, it is natural to ask what happens if Axioms 1 – 5 remain 
true but Axiom 6 is false.   The answer is that the axioms are very nearly categorical.  More 
precisely, if we are given two such systems with underlying sets of points � and 
 , then there is  
a one-to-one correspondence between the sets of points � and 
 such that collinear sets of 
points in �  correspond to collinear sets of points in 
 , noncollinear sets of points in �  
correspond to noncollinear sets of points in 
 , and if the points X and Y in � correspond to the 
points A and B in 
 , then there is a unique positive constant r such that the distances between 
points satisfy �AB �  = r � XY � for all choices of A, B, X and Y.  A proof of this result is described in 
an online site we have previously mentioned: 
 

http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/hyprgeom.html 
 
One point to note in the uniqueness result is the need to introduce a positive constant r.   The 
uniqueness result for systems satisfying all six axioms did not require a positive constant.  One 
manifestation of this difference is that the usual theory of similar triangles in Euclidean geometry 
breaks down completely if the Parallel Postulate is false. 
 
 


