
 

 

5. The late Greek period 
 
 

(Burton,  5.1 – 5.4) 
 
 
During the period between 400 B.C.E. and 150 B.C.E., Greek mathematical knowledge 
had increased very substantially. Over the next few centuries, progress was more 
limited, and much of it involved mathematical topics like trigonometry that were needed 
in other subjects such as astronomy.  However, before the end of the ancient Greek 
period during the sixth century A.D. there was some resurgence of activity that had 
important consequences for the future. 
 
 

Diophantus of Alexandria 
 
The known information about Diaphanous (conjecturally 200 – 284) is contained in a 
classic algebraic problem that is reproduced on page 207 of Burton.  His most important 
work is contained in his Arithmetica, of which we now have the first six out of thirteen  
books; manuscripts claiming to be later books from this work have been discovered but 
their authenticity has not been established.   
 
The Arithmentica of Diophantus differed greatly from earlier Greek writings in its 
treatment of purely algebraic problems in purely algebraic  terms; as noted earlier, even 
the simplest algebraic equations had been analyzed in geometrical terms ever since the 
discovery of irrational numbers.   Two aspects of Arithmetica are particularly noteworthy:  
One is his consideration of equations that have (usually infinitely) many solutions over 
the rational numbers or integers, and another is his introduction of special notation to 
manipulate mathematical relationships.  Prior to this, mathematical writers stated and 
studied algebraic problems using ordinary language.  In particular, an example of this 
sort from Egyptian mathematics is given on page 43 of Burton (see the discussion of 
Problem 24 from the Rhind Papyrus in the first paragraph of Section 2.3). 
 
We shall describe Diophantus’ notational innovations first.    Mathematical historians 
generally classify algebraic notational systems into three types; namely rhetorical, 
syncopated and symbolic.  The first of these corresponds to the original practice of 
stating things in terms of standard words and phrases, and the last corresponds to the 
use of letters and symbols that we use today.  Syncopated notation is between these 
two, and although it does not use explicit symbols in the modern sense it adopts 
systematic abbreviations for basic concepts like unknowns and standard algebraic 
operations.  This is the sort of notation that Diophantus used throughout his work.  
Several examples and more information appear on page 209 of Burton.  Frequently 
mathematical histories characterize such notation as stenographic or shorthand, and 
either term is very descriptive. 
 
Diophantus considers a fairly wide range of problems in his work, including some that 
have definite solutions and others that are indeterminate.  Examples of the latter 
generally are systems of equations for which there are more unknowns than equations.  
In modern work we usually solve for some unknowns in terms of the others, but 
Diophantus was usually satisfied with finding just one solution of such equations.  



 

 

However, he did insist that his solutions be positive rational numbers.  His solutions and 
techniques are generally specialized and highly ingenious as opposed to systematic.  
One reason for this might be that despite his major notational innovations he still did not 
have the tools needed to formulate problems more generally.  For example, his notation 
only allowed for one unknown; reducing an equation in several unknowns to a single 
unknown required clever insights and was done using words rather than his shorthand 
notation.  He also lacked a symbol for a general number n.  
 
Numerous examples are discussed in Section 5.2 of Burton and the accompanying 
exercises.  The examples from the first two books include systems of first and second 
degree equations.  Diophantus also seems to have been aware of some general 
number-theoretic patterns, although it is not clear whether he could prove them.  Here 
are some examples: 
 

1. A number of the form 4n + 2 or 4n + 3 cannot be written as a sum of two 
squares (or integers). 

2. A number of the form 24n + 7 cannot be written as a sum of three squares. 
3. Every positive integer can be written as a sum of at most four squares. 

 
The first of these can be verified fairly directly, and the second is more challenging but 
can still be done in the same way, and it seems quite possible that Diophantus may have 
had proofs of these results.  However, it is far less likely that he had a proof for the last 
statement.  Fermat stated the result but could not prove it, and the first known proof was 
due to J. - L. Lagrange (1736 – 1813) in the late eighteenth century using results of 
Euler.  Here are two online references: 
 

http://planetmath.org/encyclopedia/LagrangesFourSquareTheorem.html 
 

http://planetmath.org/encyclopedia/ProofOfLagrangesFourSquareTheorem.html 
 
Even though modern mathematics usually has no problem in viewing irrational numbers 
as solutions to equations, there are both practical and theoretical situations in which one 
must or should have solutions of a more specialized type.  For example, it is often 
necessary or useful to know whether a system of equations has a solution for which the 
values of some or all the unknown quantities are integers.   When one uses terms like 
Diophantine equations or Diophantine problems today, it is generally understood that 
one is looking for solutions where the values of all the unknowns are integers. 
 
Of course, specific Diophantine problems had been studied  long before the work of 
Diophantus; for example, the study of integral solutions to the classical Pythagorean 
equation x2  +  y2   =   z2 predated Greek mathematics by well over a thousand years.  
The so-called Cattle Problem attributed to Archimedes is discussed on pages 213 – 214 
of Burton.  It might be worthwhile to compare the description of the problem in Burton 
with the following translation of the Greek original: 
 

http://www.mcs.drexel.edu/~crorres/Archimedes/Cattle/Statement.html 
 

As noted in Burton, the solution of the cattle problem reduces to solving the Diophantine 
equation  x2  –  4,729,494 y2   =  1 where y is divisible by 9314.  Not surprisingly, the 
integral solutions involve very large numbers, and a complete solutions was not obtained 
until the nineteen sixties with the help of computers; the solution obtained and confirmed 



 

 

at the time has over 200,000 digits. 
 
Mathematicians from India and China were also interested in examples of Diophantine 
equations around the time of Diaphanous (say within two centuries or so of his work), 
and some aspects of their work are summarized on pages 214 – 219 of Burton. 
 
The study of Diophantine equations continues to be a central topic in number theory.  In 
general, it is difficult to determine whether a given Diophantine equation is solvable. For 
example, the Diophantine equation x2 – 94y2  =  1 is solvable, although the smallest 
solution is x  =  2,143,295 and y  =  221,064, but on the other hand the highly similar 
equation x2  –  94y2  =  –1 has no solutions.   Results from the middle of the twentieth 
century imply that there is no systematic way of deciding whether a given Diophantine 
equation is solvable.  Here is an online reference: 
 

http://www.ltn.lv/~podnieks/gt4.html 
 
Diophantus refers to other writings of his that are now lost, and in particular he mentions 
the following result:   Given any integers a and b then it is possible to find numbers c and 
d such that a3  –  b3   =   c3  +  d3.  
 
 

Pappus of Alexandria 
 
Much of the late activity in Greek mathematics was devoted to summaries and 
commentaries on earlier work.  This work is particularly important for mathematicians 
today because several of these commentaries survived to a great extent even though 
the original works are now lost.  Pappus (290 – 350) was a particularly important 
contributor in this regard, for his writings indicate he had a very solid understanding of 
the earlier work and his own perspective on the earlier writings.   His own results in 
geometry were the first major advances in centuries for that subject, and he is regarded 
as the last great mathmatician from the Hellenistic period.   
  
Pappus’ main (and best preserved) work was The Collection or The Synagogue, an 
extremely comprehensive treatise on geometry which included everything of interest to 
him.  In several cases, he is our only source of knowledge about some mathematicians’ 
work. Of the original  eight books, only the first and part of the second are missing (and 
fortunately these are less crucial than the rest for modern scholarship).  At many points 
in this work he added explanations, alternative approaches, and new results of his own.  
We have already mentioned his short and elegant proof of the Isosceles Triangle 
Theorem (see page 145 of Burton).   
 
An extremely brief account of some results in Pappus’ Synagogue appears on pages 
221 – 222 of Burton, but a more extensive summary can be found at the following online 
site: 

 
http://www.math.tamu.edu/%7Edallen/masters/Greek/pappus.pdf 

 
Today Pappus may be best known for his results on the areas of surfaces of revolution 
and volumes of solids of revolution, which frequently appear in the text and exercises for 
standard calculus books.  The result states that the area of a surface of revolution is the 
product of the length of the curve generating the surface times the distance traveled by 



 

 

the center of mass when rotated about the axis, and the volume of a solid of revolution is 
the product of the volume of the generating region times the distance traveled by its 
center of mass when rotated about the axis.  This result was also published by P. Guldin 
(1577 – 1643) in the seventeenth century, and it is frequently known as the Pappus-
Guldin Theorem.  A discussion and partial derivation of the result appears in an 
addendum to these notes.    

 
 

Some later commentators 
 
This discussion will be limited to a few names.   Theon of Alexandria (335 – 395) is 
particularly known for his edited version of Euclid’s Elements that became standard.  His 
daughter Hypatia (370 – 418) is the first prominent woman to appear in the history of 
mathematics, but all of her writings are lost.  In many respects she marks the end of 
scholarly activity in Alexandria; at the end of the fourth century, Christianity became the 
state religion of the Roman Empire, and she was a victim of the resulting changes.  
Further discussion appears on pages 222 – 223 of Burton.   We have already mentioned 
Proclus Diadochus as a valuable source about Greek mathematics during the period 
between Thales and Euclid.  One further commentator who should be mentioned is 
Eutocius of Ascalon (480 – 540), whose recognition of Archimedes’ work played an 
important role in preserving knowledge of the latter’s contributions.   
 
A combination of events is regarded as marking the end of ancient Greek mathematics; 
before these events, mathematical activities had slowed down or stopped altogether, 
and the main significance of the milestones is their irreversibility.  We have already 
noted the adoption of Christianity as an official religion at the end of the fourth century, 
and this accelerated the decline substantially.  The Platonic academy in Athens was 
finally closed during the early sixth century, and the Islamic conquests during the 
seventh century radically changed the basic culture in many places such as Egypt and 
Syria.  Efforts to preserve the ancient Greek intellectual heritage continued throughout 
the existence of the Byzantine Empire until it ended in 1453, but this activity was 
extremely limited and entirely devoted to preservation rather than innovation.  By the end 
of the Byzantine Empire intellectual activity in Western Europe had become revitalized 
and had begun to reacquaint itself with the work of ancient Greek mathematicians. 

 
 

The Arab conquest of Alexandria 
 
There is a widely circulated story about the destruction of the library in Alexandria after 
its conquest by the Caliph Omar (581–644; reigned 634 – 644) in 641, and it is 
summarized on page 223 of Burton.   The discussion of this story in Burton is far more 
balanced than the comparable discussions in several other histories and mathematics 
texts, and in particular Burton mentions other periods during which the library appears to 
have been damaged seriously along with the deterioration of the library collection by the 
seventh century.  More important, Burton’s choice of words also suggests that details in 
the story may not be accurate.   
 
In fact, there is only one source for this story, and it is a Christian writer who lived four 
centuries later.  Other historical sources for the area during the seventh century say 
nothing about the matter, even in cases where one might expect to see some comments 
about such a major event and even if some parts of the story may be highly exaggerated 



 

 

(for example, fires from the burning books heating 4000 municipal baths for six months).  
The following links provide more detailed information: 
 

http://www.bede.org.uk/library.htm 
 

http://www.bede.org.uk/Library2.htm 
 

http://www.ehistory.com/world/articles/ArticleView.cfm?AID=9 
 

http://www.answers.com/topic/library-of-alexandria 
 

http://www.newadvent.org/cathen/01303a.htm 
 
A few comments seem necessary here.  Although the historical records do not provide 
much evidence for the story about the library and no corroboration for the story that is 
frequently recounted, they cannot be used to disprove it either.  Consequently, Burton’s 
conjecture of some historical basis for the story may well be correct.   There are many 
well documented instances of religious leaders ordering the destruction of valuable 
cultural artifacts; for example, one can point to the nearly complete destruction of Mayan 
writings by Bishop Diego de Landa in the sixteenth century and the more recent 
destruction of massive Buddhist sculptures in Afghanistan by the Taliban government in 
early 2001.  Several issues deserve to be considered in connection with the story about 
the library in Alexandria. 
 

1. As noted above, evidence in both directions is extremely limited and 
the central story is of questionable credibility. 

2. For a century or more there had been little if any interest on anyone’s 
part in whatever library contents may have remained after repeated 
destructions and prolonged disuse. 

3. Islamic culture later played an extremely important role in the history 
of mathematics, and in fact many important mathematical writings of 
the Greeks are available to us today only because they were 
translated into Arabic. 

4. At this point in history, the most unfortunate fact about the loss of 
ancient manuscripts is that they are no longer available to us. 

5. Destructive or negligent actions by a wide range of individuals and 
cultures contributed significantly to this loss of ancient writings. 

6. A great deal of ancient mathematical material survived in some form, 
and mathematics moved forward despite whatever might have 
happened. 

 
 
The final point will lead directly to the next unit. 


