
 

 

7. Mathematical revival in Western Europe 
 
 

(Burton,  6.2 – 6.4,  7.1) 
 
 
Although mathematical studies and discoveries during the Dark Ages in Europe were 
extremely limited, there were contributors to the subject during the period from the Latin 
commentator Boëthius  (475 – 524) to the end of the 12th century.   Several names are 
mentioned in Sections 5.4 and 6.1 of Burton, and the latter’s exercises also mention 
Alcuin of York (735 – 804) and Gerbert d’Aurillac (940 – 1003), who became Pope 
Sylvester II (997 – 1003),. 
 
During the second half of the 11th century some important political developments helped 
raise European’s consciousness of ancient Greek mathematical work and the more 
recent advances by Hindu and Islamic mathematicians.   Many of these involved 
Christian conquests of territory that had been in Moslem hands for long periods of time.  
Specific examples of particular importance for mathematics were the Norman 
reconquest of Sicily, the Spanish reconquista during which extensive and important 
territories in the Iberian Peninsula changed hands, and the start of the Crusades.  From 
a mathematical perspective, one important consequence was dramatically increased 
access to the work of Islamic mathematicians and their translations of ancient Greek 
manuscripts.   Efforts to translate these manuscripts into Latin continued throughout the 
12th century; the quality of these translations was uneven for several reasons (for 
example, in many the Arabic manuscripts were themselves translations from Greek), but 
this was an important step to promoting mathematical activity in Europe.  A more 
detailed account of this so-called Century of Translation appears on pages 253 – 257 of 
Burton. 
 

Fibonacci 
 

 
Leonardo of Pisa, more frequently known as Fibonacci (1170 – 1250) symbolizes the 
revival of mathematical activity in Europe during the late Middle Ages, and his book Liber 
abaci (Book of Counting – literally, the abacus), which appeared in 1202, is the first 
major work aimed specifically at a European audience that recounts some important 
ideas from Hindu and Islamic mathematics and integrates this work with that of earlier 
contributions from Greek mathematics.   The work is not merely a routine compilation of 
material from other sources, but rather it represents an independent and broadly based 
point of view.   
 
Despite the impact of Liber abaci during the late Middle Ages, the first printed version did 
not appear until 1857, nearly 650 years after it was first written; the first English 
translation appeared in 2003. 
 
 

Comments on the contents of Fibonacci’s writings 
 

Certainly the most far reaching aspect of Liber Abaci is its presentation of the Hindu-
Arabic number system and the large amount of evidence it produces to demonstrate the 



 

 

superiority of the Hindu-Arabic notation and Hindu methods of computation.  However, 
there are several other noteworthy features.  Some ideas in the book were very 
advanced for that time, but many aspects of the notation are clumsy by modern 
standards. 
 
As Burton notes, it is somewhat ironic that today Fibonacci is best known for one 
problem from his book that was named after him in 1877 by E. Lucas (1842 – 1891); 
indeed this sequence appears in writings of the Indian mathematicians Hemachandra 
(1089 – 1173) and Gospala around 1135, and it also appears in seventh century Indian 
writings. 
 
There is an extensive discussion of the Fibonacci sequence in Burton.  Perhaps the 
most notable omission is an explicit formula for the values of Fn as a function of n.  The 
formula is given below; a derivation appears at the end of this section: 

 

In Liber quadratorum Fibonacci investigates several number-theoretic questions 
involving perfect squares.  Much of this is described on pages 260 – 261 of Burton.  
As noted there, one basic topic of interest in this book is the following: 

Given an arithmetic progression of integers a   +   n d  (where a and d are fixed integers 
and n is the variable), can one find three or more successive values that are perfect 
squares? 

Burton gives one example of such a triple  –  namely, 1, 25 and 49  –  for which the 
difference d is equal to 24, and some of the exercises discuss additional aspects of this 
question.  Remarks in Burton suggest that other triples of this type exist, but nothing 
further is stated, so we shall fill in some details here.    In fact, there are 67 sequences of 
three elements whose constant difference was 10,000 or less.  The next few are given 
as follows:  

{2², 10², 14²},  constant difference  = 96 
{7², 13², 17²}, constant difference = 120 
{3², 15², 21²}, constant difference = 216 
{7², 17², 23²}, constant difference = 240 

Fibonacci actually studied this question of squares in an arithmetic progression 
extensively, and in particular he completely characterized the common differences d that 
can arise from consecutive triples of perfect squares.  He called these differences 
congruous numbers, and they are defined in the second part of Exercise 5 on page 
265 of Burton.   In this terminology, the objective of Exercise 5(b) is to show that every 
congruous number is divisible by 24.  We shall not give a proof of Fibonacci’s result 
relating congruous numbers to consecutive squares in arithmetic progressions, but here 
is a proof that the common difference d is always divisible by 24; it is taken from the 
following online site: 

http://nrich.maths.org/askedNRICH/edited/3412.html 

 

Suppose a2, b2 and c2 are in an arithmetic sequence whose constant difference isn't a 



 

 

multiple of 8. Without loss of generality we might as well assume that G.C.D. (a,b) = 
G.C.D. (b,c) = 1. Note that a and c cannot both be even since then b2 = (a2 + c2) / 2 is 
even so a and b would share a factor of 2. This means that at most one of a, b ,c is 
even. 
 
Now if x is an odd integer then it is easily checked that x2 = 1 (mod 8) [by one of the 
exercises, if x is odd we know that x leaves a remainder of 1 when divided by 8] and if x 
is even then either x2 = 0 (mod 8) or x2 = 4 (mod 8). [The notation means that both 
sides of the equation have the same remainder when divided by 8].  Therefore working 
mod 8 the triple (a2, b2, c2) must be one of the following: 

 
(0,1,1) 
(4,1,1) 
(1,0,1) 
(1,4,1) 
(1,1,0) 
(1,1,4) 

 
It is clear that none of these are in arithmetic sequence, so this is a contradiction 
establishing that the common difference must be a multiple of 8.  
 
Now if the arithmetic progression has common difference d = 1 (mod 3) then a2, b2, c2 
must each have distinct [remainders or] residues (mod 3); in particular one of them must 
be equal to  – 1 (mod 3) which is impossible. Likewise if the common difference d =  – 1 
(mod 3) then a2, b2, c2 have distinct residues (mod 3) which leads to the same 
contradiction. So we must have d  =  0 (mod 3).  Therefore the common difference is a 
multiple of 8 and 3, and hence it must be a multiple of 24. 
 
One can also ask whether there are even longer sequences of squares in arithmetic 
progressions, and a result of P. de Fermat (1601 – 1665) and L. Euler states that no 
such sequences exist.  Here is a simple consequence of the nonexistence result which 
is taken from the following online source: 
 

http://www.mathpages.com/home/kmath044.htm 
 

H. Jurjus has asked whether there are rational numbers p, q such that (p², q²) is a point 
on the hyperbola given by  

(2 – x) (2 – y)     =     1 

with (p², q²) not equal to (1,1).  The answer is no. To see why, suppose we have rational 
numbers p  =  a / b and q  =  c / d (both fractions reduced to least terms). Then if (p², q²) 
is on the hyperbola we have 

(2b²  –  a²) (2d²  –  c²)     =    b²  d² 
 
               

Since our fractions are reduced to least terms, it follows that b² is coprime to 2b²  –  a² 
[no common divisors except 1] and c² is coprime to 2d²  –  c² so that  

b²     =     2d² - c²       and       d²     =     2b² - a². 



 

 

Rearranging terms we see that 

 

b²  –  d²     =     d²  –  c²       and       d²  –  b²     =     b²  –  a² . 

 

Together these equations imply that a², b², d² and c² are in arithmetic progression, which 
is impossible. 

Another noteworthy achievement of Fibonacci was his solution of the cubic equation  

 
x3  +  2x2  +  10x    =    20 

 
which was reportedly given to him as a challenge.  His numerical approximation to the 
root is described on page 262 of Burton; aside from the accuracy of the result, it is worth 
noting how, despite his writings on the Hindu-Arabic numeration system, he (and others, 
including Arabic mathematicians) still wrote fractional values in the Babylonian 
sexagesimal notation).   In his analysis of this equation he also made an important 
observation which foreshadowed the nineteenth century results on the impossibility of 
trisecting angles and duplicating cubes by means of straightedge and compass.  It 
appears that the original version of the problem was to find a roof of the given cubic 
equation by means of classical Greek straightedge and compass methods.  Fibonacci 
proved that the root could not be obtained by such methods. 
 
Rather than attempt to give Fibonacci’s proof, we shall analyze the equation from the 
same viewpoint we employed to study the construction problems.  As in those cases, the 
proof that a root cannot be found using straightedge and compass depends upon 
showing that the polynomial  x3  +  2x2  +  10x   –   20  cannot be factored into a product 
of two rational polynomials of lower degree, or equivalently the results of Gauss, it does 
not have an integral factorization of this sort.  If it had such a factorization then it would 
have a linear factor and hence an integral root.  Furthermore, if it had an integral root 
then this root would have to divide 20 and thus would have to be one of the following: 
 

±1,   ±2,   ±4,   ±5,   ±10,   ±20 
 
One is then left to check that none of these twelve integers is a root of the given 
polynomial.   Direct substitution is perhaps the most immediate way of attacking this 
problem, but one can also dispose of many possibilities simultaneously by noting that 
the polynomial under consideration is positive for all integers x   >   1  and it is negative 
for all integers  x  <  0.  
 
Fibonacci’s writings on Pythagorean triples are discussed in Section 6.4 of Burton 
(pages 273 – 277). 

 
Jordanus Nemorarius 

 
 
One noteworthy contemporary of Fibonacci was Jordanus Nemorarius (1225 – 1260), 
who made contributions in several areas.  He successfully analyzed mechanical 
problems about inclined planes that Archimedes had not been able to solve, and he was 



 

 

the first western mathematician to use letters consistently as symbols for unknown 
quantities.  However, aside from this innovation his mathematical terminology was 
rhetorical (see pages 263 – 264 of Burton). 
 
One result of Jordanus proved a basic relationship between perfect and nonperfect 
numbers.  Let us define a positive number to be abundant if it is less than the sum of its 
proper divisors and deficient if it is greater less than the sum of its proper divisors.  The 
result of Jordanus states that a nontrivial multiple of a perfect number is abundant and a 
nontrivial divisor of a perfect number is deficient.  In particular, this implies that every 
nontrivial multiple of 6, 28, …  is abundant. 
 

Nicole Oresme 
 
On page 264 of Burton there is brief reference to Nicole Oresme (1323 – 1382; there is a 
misprint in Burton).  Oresme made several highly original contributions to mathematics, 
many of which were centuries ahead of their time and some of which had a more 
immediate impact. 
 
Fractional exponents.  Oresme proposed a mathematically sound way of defining 
positive fractional powers of a number and even raised the possibility of irrational powers 
like sqrt(2). 
 
Graphical representation of functions.  The book, Tractatus de figuratione 
potentiarum et mensurarum (Latitude of Forms), written by Oresme or one of his 
students, popularized the idea of representing variable quantities graphically; we have 
already noted that the methods of Apollonius had anticipated the development of 
coordinate geometry much earlier, but the idea of representing variables was presented 
very clearly in Oresme’s work, and its influence can be measured by the numerous 
editions of his work that were published well into the sixteenth century.   His suggestion 
that physically measurable quantities are continuous has been implicitly assumed in 
many applications of mathematics to science and engineering for centuries.  Oresme 
also speculated about graphical representations of quantities dependent on two 
variables by surfaces in three dimensions and possibly about analogs in even higher 
dimensions, but the mathematical notation at the time was inadequate. 
 
Infinite series.  During the fourteenth century western mathematicians began to cast 
aside the Greek reluctance to consider infinite processes, and in particular various 
infinite series were studied.   It should be noted that Indian and Chinese mathematicians 
had studied such series much earlier, and some particularly noteworthy results of theirs 
from earlier times through the fifteenth century were rediscovered after the relevance of 
calculus to infinite series became apparent in the early eighteenth century.  In particular, 
the Indian mathematician Madhara (1340 – 1425) discovered the familiar infinite series 
for the inverse tangent function and the specialization to an infinite series for π/4, and in 
the next century scholars continuing his work discovered a series that converges far 
more rapidly: 

 

 
Since geometric series are probably the simplest and most basic examples, it is not 
surprising that medieval mathematicians were able to derive the standard formulas for 



 

 

such series without much trouble, and in fact they looked at numerous other problems. 
 
Oresme used his graphical approach to provide an elegant proof for the following infinite 
series formula due to Robert Suiseth (or Swineshead) (ca. 1340-1360), better known as 
Calculator: 
 

 
 
Using results on rearrangements of series one can derive this result using modern 
methods by looking at the following tableau: 
 

 
 
Note that in ordinary addition of finite sums, the answer does not depend upon the order 
or grouping of summation and that the regrouping suggested by the preceding tableau 
involves an infinite rearrangement and regrouping.  For sums of positive quantities it is 
possible to justify such rearrangements, but if one is working with sums that have both 
positive and negative terms, then serious problems can arise.  In particular, if we 
evaluate the infinite series for the inverse tangent of x 
 

 
 
at  x   =   1 we know that the answer is π/4, but we can rearrange the terms in this series 
to realize any real number as the sum.  A reference for this fact is W. Rudin, Principles 
of Mathematical Analysis (3rd Ed.), pages 75 – 77. 
 
Finally, Oresme appears to be the first person in the history of mathematics to discover 
that the harmonic series  
 

 
 
diverges.  His proof is the same one that is often seen today in textbooks:  The sum of 
the first term by itself is ½, the sum of the next two terms is also ½, the sum of the next 
four terms is again ½, and so on, so that if one adds together sufficiently many terms 



 

 

from this series the sum will exceed any chosen positive real number. 

 

Addendum A.  The closed formula for Fibonacci numbers 

 

We shall give a derivation of the closed formula for Fn here. This formula is known as 
Binet’s formula because it was derived and published by J. Binet (1786 – 1856) in 1843. 
However, the result had been known to several well known mathematicians including L. 
Euler (1707 – 1783), Daniel Bernoulli (1700 – 1782) and A. De Moivre (1667 – 1754) 
more than a century earlier. 

We begin with general observations.  Suppose we are given a sequence defined 
recursively by a formula  

xn       =       b xn–1   +    c xn–-2 

where b and c are real numbers.  The first point is that such a sequence is uniquely 
determined by x0 and x1.  Suppose that xn and yn are two such sequences with values of 
P and Q when n = 0 or 1.  Then xn   =   yn when n = 0 or 1; assume that the values of the 
sequence are equal for all n  <  k, where k  >  1.    Then we have 

xk       =       b xk–1   +    c xk–2   =       b yk–1   +    c yk–2   =       yk 

and therefore the two sequences are equal by mathematical induction. 

In favorable cases one can write down the sequence xn in a simple and explicit form.  
Here is the key step. 

PROPOSITION.   Suppose that r and s are distinct roots of the auxiliary polynomial 

t 2   –   b t   –   c . 

Then for every pair of constants u, v the sequence 

u rn   +    v sn 

solves the equation  xn    =    b xn–1  +   c xn–-2.   

 

Derivation.     Let    yn    =  u rn   +    v sn ;  we need to show that  

yn    –    b yn–1  +   c yn–-2    =    0 

for n  >  1.  Let’s expand the left hand side and see what we get. 

 

( u rn   +    v sn )   –   b ( u r n – 1   +    v s n – 1 )   –   c ( u r n – 2   +    v s n – 2 )      =      

u (rn    –    b r n – 1  +   c r n – 2 )     +    v (sn    –    b s n – 1  +   c s n – 2 )       = 

  u r n – 2 (r2    –    b r   +   c)     +    v s n – 2 (s2    –    b s    +   c )       = 



 

 

u r n – 2 · 0     +    v s n – 2 · 0       =     0. 

Therefore u rn   +    v sn solves the original equation. 

One can take this further to find the unique solutions satisfying  x0   =   P and x1   =   Q by 
solving the equations u   +    v   =    P  and  u r   +    v s    =   Q  for u and v.  One can 
always find a unique solution because r and s are distinct. 

 

We now specialize all this to the Fibonacci equation 

Fn       =       Fn–1   +    Fn–-2 

whose auxiliary polynomial is equal to 

 
 
Equivalently, one can write this polynomial in the form 
 

 
and since the roots of this equation are 
 

 
 
it follow that the closed formula for the Fibonacci sequence must be of the form  

 
 
for some constants  u and v.  If we use the conditions F0  =  0  and F1  =  1  we see that  

 
 
where the first equation simplifies to  u  =   – v ;  substituting this into the second one 
yields 
  

 
Therefore 

 
and accordingly we have 

 


