
11. A.  Divisors of Mersenne numbers 
 
 
The purpose of this document is to prove a result of Fermat that is stated in the main 
notes for the unit. 
 
Theorem 1.   If  p is an odd prime,  then every divisor of  2p – 1 has the form 2 p k  + 1.  
 
One step in the proof is the following special case. 
 
Theorem 2.   Let p and q be odd primes. If q divides 2p – 1, then q   =   1 (mod 2p). 
 
Important note.   The proof of this result will use concepts that are not covered in this 
course or its prerequisites but are covered in many undergraduate algebra courses.  The 
proof will not be used subsequently in this course. 
 
Proof that the second result implies the first.   Suppose that d divides 2p – 1, and 
write d as a product of primes q1 … qm; since d divides an odd number it follows that d 
and hence each q j must also be odd.  Therefore by Theorem 2 we have that  q j   =   1 
(mod 2p) for all j.  Therefore it follows that  
 

d   =   q1 … qm   =   1 … 1  (mod 2p)   =   1 (mod 2p). 
 
 
Proof of  Theorem 2.   If p divides 2p  –  1, then 2p   =   1 (mod q) and the multiplicative 
order of 2 (mod p) divides the prime q, sand hence it must be q.  By the Little Fermat 
Theorem the order of 2 also divides p  –  1, and since the latter is an even number we 
must have  p  –  1   =    2kq.    
 
Additional fact.  We also have  p    =    ±± 1 (mod 8).  
 
Proof.  The preceding discussion yields the congruences  2(p – 1)/2     =    2qk     =    1 
(mod p),  so 2 is a quadratic residue mod p, and therefore by Quadratic Reciprocity it 
follows that p    =    ±± 1 (mod 8). 
 
Example.   If a prime number p divides  231 – 1, then the preceding results combine to 
show p  =  1  or 63 (mod 248).   By 1772 Euler had used this to show that  
 

231 – 1    =    2,147,483,647 
 
is a (Mersenne) prime number. 
 
 
 
Source:  Most of the material above was taken from the following site: 
 

http://www.utm.edu/research/primes/notes/proofs/MerDiv.html 
 
 


