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We have already noted that certain ancient Greek mathematicians – most notably 
Eudoxus and Archimedes – had successfully studied some of the basic problems and 
ideas from integral calculus, and we noted that their method of exhaustion was similar to 
the modern approach in some respects (successive geometric approximations using 
figures whose measurements were already known) and different in others (there was no 
limit concept, and instead there were delicate reductio ad absurdum arguments).  
Towards the end of the 16th century there was a revival of interest in the sorts of 
problems that Archimedes studied, and later in the 17th century this led to the 
independent development of calculus by Isaac Newton (1643 – 1727) and Gottfried 
Wilhelm von Leibniz (1646 – 1716).   
 
Two important factors leading to the development of calculus originated in the late 
Middle Ages, and both represented attempts to move beyond the bounds of ancient 
Greek mathematics, philosophy and physics.   
 

1. Interest in questions about infinite processes and objects.   As 
noted earlier, ancient Greek mathematics was not equipped to 
deal effectively with Zeno’s paradoxes about infinite and by the 
time of Aristotle it had essentially insulated itself from this 
“horror of the infinite.”   However, we have also noted that 
Indian mathematicians did not share this reluctance to work 
with the concept of infinity, and Chinese mathematicianss also 
used methods like infinite series when these were convenient.  
During the 14th century the mathematical work of Oresme and 
others on infinite series complemented the interests of the 
Scholastic philosophers; questions about the infinite played a 
key role in their efforts to make Greek philosophy consistent 
with Christianity.   Philosophers such as William of Ockham 
(1285 – 1349) and Gregory of Rimini (1300 – 1358) provided 
insights which anticipated the concept of limit that is basic to 
calculus as we know it. 

 
2. Interest in questions about physical motion.  During the 13th 

century Jordanus discovered the mathematically correct 
description for the physics of an inclined plane (a result that 



had eluded Archimedes and was described incorrectly by 
Pappus), and later members of the Merton school in Oxford 
such as T. Bradwardine (1290 – 1349) and W. Heytesbury 
(1313 – 1373) had discovered an important property of 
uniformly accelerated motion; namely, the average velocity 
(total distance divided by total time) is in fact the mathematical 
average of the initial and final velocities.   The significance of 
this concept for the motion of falling bodies was not 
understood at the time and would not be known until the work 
of Galileo and others in the 16th century.  During the late 16th 
century interaction between mathematics and physics began 
to increase at a much faster rate, and many important 
contributors to mathematics such as S. Stevin also made 
important contributions to physics (in Stevin’s case, the 
centers of mass for certain objects and the statics and 
dynamics of fluids). 

 
Here are some online references to further information about the topics from the Middle 
Ages described above: 

 
http://www.math.tamu.edu/%7Edallen/masters/medieval/medieval.pdf 

 
http://www.math.tamu.edu/%7Edallen/masters/infinity/infinity.pdf 

 
http://plato.stanford.edu/entries/heytesbury/ 

 
 
 

Problems leading to the development of calculus 
 
 
In the early 17th century mathematicians became interested in several types of problems, 
partly because these were motivated by advances in physics and partly because they 
were viewed as interesting in their own right.   
 

1. Measurement questions such as lengths of curves, areas of 
planar regions and surfaces, and volumes of solid regions, and 
also finding the centers of mass for such objects. 

 
2. Geometric and physical attributes of curves, such as tangents 

and normals to curves, the concept of curvature, and the relation 
of these to questions about velocity and acceleration. 

 
3. Maximum and minimum principles; e.g., the maximum height 

achieved by a projectile in motion or the greatest area enclosed 
by a rectangle with a given perimeter. 

 
Specific examples of all three types of problems had already been studied by Greek 
mathematicians.   The results of Eudoxus and Archimedes on the first type or problem 
and of Archimedes and Apollonius on the second have already been discussed.  We 
know about the work of Zenodorus (200  – 140  B.C.E.) on problems in the third type 



because it is reproduced in Pappus’ anthology of mathematical works (the Collection or 
Synagoge).   Some examples of Zenodurus’ results are 

(1) among all regular n-gons with a fixed perimeter, a regular n-gon 
encloses the greatest area,  

(2) given a polygon and a circle whose perimeter of the polygon equals 
the circumference of the circle, the latter encloses the greater area,  

(3) a sphere encloses the greatest volume of all surfaces with a fixed 
surface area. 

 
  
 

Infinitesimals and Cavalieri’s Principle 
 
We shall attempt to illustrate the concept of infinitesimals with an example of use to 
determine the volume of a geometrical figure. 
 
Usually the formula for the volume of a cone is derived only for a right circular cone in 
which the axis line through the vertex or nappe is perpendicular to the plane of the base.   
It is naturally to ask whether there is a similar formula for the volume of an oblique cone 
for which the axis line is not perpendicular to the plane of the base.   One can answer 
this question using an approach developed by B. Cavalieri (1598 – 1647).  A similar idea 
had been considered by Zu Chongzhi, who is also known as Tsu Ch’ung-chin (429 – 
501), but the latter’s work was not known to Europeans at the time. 
 
CAVALIERI’S PRINCIPLE.  Suppose that we have a pair three-dimensional solids S 
and T that lie between two parallel planes P1 and P2, and suppose further that for each 
plane Q that is parallel to the latter and between them the plane sections   Q  ∩∩  S and   
Q   ∩∩   T have equal areas.  Then the volumes of S and T are equal. 
 
Here is a physical demonstration which suggests this result.  Take two identical decks of 
cards that are neatly stacked just as they come right out of the package.  Leave one 
untouched, and for the second deck push along one of the vertical edges so that the 
deck forms a rectangular parallelpiped as below. 
 

 
 
In this new configuration the second deck has the same volume as first and it is built out 
of very thin rectangular pieces (the individual cards) whose areas are the same as those 
of the corresponding cards in the first deck.  So the areas of the plane sections given by 
the separate cards are the same and the volumes of the solids formed from the decks 
are also equal.   



 
We shall now apply this principle to cones.  Suppose we have an oblique cone as on the 
right hand side of the figure below.  On the left hand side suppose we have a right 
circular cone with the same height and a circular base whose area is equal to that of the 
elliptical base for the second cone. 
 

 
 

Figure ill ustrating Cavalieri’ s Principle 
 
In the notation of Cavalieri’s Principle we can take P1 to be the plane containing the 
bases of the two cones and P2 to be the plane which contains their vertices and is 
parallel to P1.  Let Q be a plane that is parallel to both of them such that the constant 
distance between P2 and Q is equal to y; we shall let h denote the distance between P1 
and P2, so that h is also the altitude of both cones.  If b denotes the areas of the bases 
of both cones then the areas of the sections formed by intersecting these cones with Q 
are both equal to b y2/h2.  Therefore Cavalieri’s Principle implies that both cones have 
the same volume, and since the volume of the right circular cone is b h2/ 3 it follows that 
the same is true for the oblique cone. 
 
One approach to phrasing our physical motivation in mathematical terms is to imagine 
each cone as being a union of a family of solid regions given by the plane sections; for 
the right circular cone these are regions bounded by circles, and for the oblique cone 
they are bounded by ellipses.  Suppose we think of these sections as representing 
cylinders that are extremely thin.  Then in each case one can imagine that the volume is 
formed by adding together the volumes of these cylinders, whose areas – and 
presumably thicknesses – are all the same, and of course this implies that the volumes 
of the original figures are the same.  One fundamental question in this approach is to be 
more specific about the meaning of “extremely thin.”  Since a planar figure has no finite 
thickness, one might imagine that the thickness is something less, and this is how one is 
led to the concept of a thickness that is infinitesimally small.   
 
The preceding discussion suggests that an infinitesimal quantity is supposed to be 
nonzero but is in some sense smaller than any finite quantity.  If we are given a 
geometric figure that can be viewed as a union of “indivisible” objects with one less 
dimension – for example, the planar region bounded by a rectangle viewed as a union of 
line segments parallel to two of the sides, or the solid region bounded by a cube as a 
union of planar regions bounded by squares parallel to two of the faces – then the idea 
is to view the square as a union of rectangular regions with infinitesimally small width or 
the square as a union of solid rectangular regions with infinitesimally small  height.  
Likewise, this approach suggests an interpretation of a continuous curve as being 
composed of a family of straight lines with infinitesimally small length.  When applied to 
our examples of cones, it leads to thinking of the solid region bounded by either cone as 
a union of circular or elliptical cylinders with infinitesimally small height. 
 



 
Mathematicians and users of mathematics have though about infinitesimals for a long 
time.  . They already appear in the mathematics of the early Greek atomist philosopher 
Democritus (460  –  370  B.C.E.) and an approach to squaring the circle developed by 
Antiphon, but advances by Eudoxus and others during the 4th century B.C.E. enabled 
Greek mathematicians to avoid the concept, and this fit perfectly with the reluctance of 
Greek mathematicians and philosophers (e.g., Aristotle) to eliminate questions about the 
infinite from their mathematics.  Taking the somewhat obscure form of "indivisibles", they 
reappeared in the mathematics of the late Middle Ages, and they played an important 
role in the work of J. Kepler (1571 – 1630) on laws of planetary motion, particularly his  
Second Law which states that the orbits of planets around the sun sweep out equal 
areas over equal times.   During the 17th century infinitesimals were used freely by many 
mathematicians and scientists who contributed to the development of calculus, and in 
particular both Newton and Leibniz used the concept in their definitive accounts of the 
subject.  However, as calculus continued to develop, doubts about the logical soundness 
of infinitesimals also began to mount.  Such questions ultimately had very important 
consequences for the development of mathematics, and they will be discussed later in 
these notes. 
 

A general comment on coverage 
 
During the 17th century many mathematicians were interested in similar problems, and 
many results were discovered independently by two or more researchers.  Not all such 
cases can be described completely in a brief summary such as these notes; one guiding 
principle here is to mention the persons whose work on a given problem had the most 
impact. 
 
 

Progress on measurement questions 
 

 
Methods and results from Archimedes and others provided important background and 
motivation for work in this area.  We have already discussed the use of infinitesimals to 
derive formulas in some cases, and there was a great deal of further work based upon 
such ideas.  In particular, during the time before Newton’s and Leibniz’ work appeared 
many of the standard examples in integral calculus had been worked out by preliminary 
versions of methods that became standard parts of the subject.  Here are some specific 
examples: 
 

Integrals of polynomials and more general power functions.  Cavalieri computed the 
integral of xn geometrically in cases where n is a positive integer, Gregory of St. Vincent 
(1584 – 1667) integrated x-1 in geometric terms that are equivalent to the usual formula 
of ln x, and J. Wallis (1616 – 1703) generalized the integral formula for xn to other real 
values of n.  Wallis was a particularly important figure in the development of calculus for 
several reasons.  His methods, which are discussed on pages 357 – 360 of Burton, 
replace geometric techniques with algebraic computations and analytic considerations, 
and as such they are a milestone in the development of analysis (calculus) as a subject 
distinct from both algebra and geometry.  In an entirely different direction, Wallis is also 



known today for his applications of integral formulas to derive his infinite product formula 
for π/2: 

 

We should note here that an earlier infinite product formula involving π  
 

 
 
had been discovered by Viète (and, as noted earlier, Indian mathematicians had already 
discovered some of the standard infinite serieis formulas involving  π).  
 
Measurements involving the cycloid curve and regions partially bounded by it.  
There was an enormous amount of interest in the properties of the cycloid curve during 
the 17th century, and there were also some bitter disputes about priorities among some 
of the numerous mathematicians who worked on this example.   Results included 
computations of arc lengths as well as areas, volumes and centers of mass associated 
to the curve.  Mathematicians whose names are associated with this work include B. 
Pascal (1623 – 1662), E. Torricelli (1608 – 1647), and G. P. de Roberval (1602 – 1675).   
 
Infinite solids with finite volume.  Torricelli also discovered a fact that few if any 
mathematicians had anticipated; namely, the existence of an unbounded solid of 
revolution whose volume is finite; his example is an unbounded piece of the solid formed 
by rotating the standard hyperbola y  =  1/ x about the x – axis. 
 
Arc length.  Early in the 17th century there were doubts about the possibility of 
computing the arc lengths of many curves, including some extremely familiar examples.   
Results of H. van Heuraet  (1633 – 1660)  showed the problem of finding arc length of a 
given curve is equivalent to determining the area under another curve, and he also 
worked out certain examples including the semi-cubical parabola a y2   =   x3.  The arc 
length of a spiral curve was computed by Roberval. 
 
Integrals and series expansions of transcendental functions.   Results on the 
integrals of standard trigonometric functions were obtained by Pascal, Roberval, I. 
Barrow (1630 – 1677) and J. Gregory (1638 – 1675).  The standard infinite series 
expansion for arctan x was obtained by Gregory (as noted before, the Indian 
mathematician Madhava had discovered two centuries earlier), and the standard infinite 
series expansion for ln (1 + x) was obtained by N, Mercator (1620 – 1687); the latter 
should not be confused with the mathematical cartographer G. Mercator (1512 – 1592) 
after whom a familiar type of map is named.  Gregory also made numerous other 
contributions, including extending and applying the classical method of exhaustion to 
questions about other conic sections and writing the first text covering the material that 
would become calculus. 
 

 
 



Progress in differentiation and maximization/minimization problems 
 
 
Greek mathematics provided far less insight into questions about tangent lines or 
maximizing functions than it did for computing areas and volumes.  In particular, there 
were no general principles comparable to the method of exhaustion for describing 
tangents; each example was treated in an entirely separate manner.  Therefore one 
major problem facing 17th century mathematicians was to produce a workable concept of 
tangent line. 
 
Some names particularly associated with this problem are Descartes, Fermat, Roberval 
and Barrow.  Descartes’ approach was based on finding the normal (perpendicular) line 
to a curve at a point, and Roberval’s was motivated by the standard interpretation of a 
parametrized curve as the path of a moving object.  Fermat and Barrow both defined 
tangent lines by the method that has become standard; namely, the tangent line to a 
curve C at a point x is a limit of the secant lines joining x to a second point y on C as y 
approaches x.   Fermat had the basic idea, but Barrow’s language (i.e., his differential 
triangle) was more precise.  A discussion of Barrow’s work appears on pages 363 – 364 
of Burton.   
 
As in the case of measurement problems, examples were the focal point of work on 
tangents.  The standard results on the slopes of tangent lines for polynomial graphs 
were obtained by Fermat in the monomial case and in complete generality by Hudde.  
Applications of derivatives to repeated roots of polynomials were also discovered at this 
time.  Tangent lines to the cycloid were determined independently by Descartes, Fermat 
and Roberval.   
 
Fermat also studied maximization and minimization problems using the approach he 
developed for tangent lines.  We note that he was interested in several different types of 
minimization problems in mathematics and physics, including the determination of a 
point inside a triangle such that the sum of the distances to all three sides is minimized, 
and more significantly his Least Time Principle in optics, which states that a beam of 
light will take the path from one point to another that takes the shortest amount of time 
and yields the standard results on refraction and reflection.  Further discussion of such 
basic minimization problems is contained in the following book: 
 

S. Hildebrandt and A. Tromba, The Parsimonious Universe. 
Springer – Verlag, New York, 1996.  ISBN: 0 – 387 – 97991 – 3. 

 
 
A result of Kepler’s on maximization {the Wine Barrel Problem) can also be mentioned 
at this point.  He observed that a wine merchant had figured the amount of wine in a 
barrel by inserting a measuring stick into the tap hole S until it reached the lid at D, after 
which he read off the length SD   =   d and set the price accordingly.  Kepler was 
concerned about the uniformity of pricing by this method and decided to analyze its 
accuracy; he correctly realized that a narrow, high barrel might have the same linear 
measure SD as a wide one and would indicate the same wine price, though its volume 
would be considerably smaller (see the figure on the next page). 



 

 
 

In his approach to determine the volume in terms of d to determine the volume, Kepler 
approximated the barrel by a cylinder, with base radius s of the base and height h.  He 
then looked for the value of h giving the largest value V if d is held constant.  Using 
differential calculus one can show that the relation between d and h must be 3h2   =   
4d2 which is what Kepler found using less refined methods.  He also observed that the 
shapes of the wine barrels were close to this optimal value – so close that he could not 
believe this was a coincidence. Of course, the manufacturing processes then were less 
uniform than they are now, so is was unlikely that all barrels satisfied this mathematical 
specification precisely, but Kepler further noted that if a barrel deviated slightly from the 
optimal ratio this would have little effect on the volume  because a function changes very 
slowly near its maximum. 
 
 

The emergence of calculus 
 
Since many of the basic facts in calculus were known before the work of Newton and 
Leibniz, it is natural to ask why they are given credit for inventing the subject.  Others 
came very close to doing so; in particular, Barrow understood that the process for finding 
tangents (differentiation in modern terminology) was inverse to the process for finding 
areas (integration in modern terminology).  In these notes we shall focus on the decisive 
advances that make the work of Newton and Leibniz stand out from the important, high 
quality results due to many of their contemporaries. 
 
 

1. Before Newton and Leibniz techniques for differentiating and 
integrating specific examples had been developed, but they 
were the first to set general notation and define general 
"algorithmic processes" for each construction.   Earlier workers 
were not able to derive useful and general problem-solving 
methods. 

 
2. Newton and Leibniz recognized the usefulness of differentiation 

and integration as general processes, not just as methods to 
solve measurement and tangent problems in important special 
cases. No had previously recognized the usefulness of calculus 
as a general mathematical tool.  

 
3. With the exception of Barrow, the inverse relationship between 

differentiation and integration had not been clearly recognized 



in earlier work, and Newton and Leibniz were the first to 
formulate it explicitly and establish it in a logically convincing 
manner.   

 
4. Both stated the main ideas and results of calculus algebraically, 

so that the subject was no longer an offshoot of classical Greek 
geometry but significantly broader in scope and poised to make 
fundamental contributions to many areas of knowledge. 

 
 
Sections 8.3 and 8.4 of Burton contain a great deal of detail about the scientific and 
philosophical contributions of Newton (see pages 365 – 381) and Leibniz (see pages 
383 – 402).  In particular, the bitter dispute about credit for discovering calculus is 
described there.  We shall only summarize the points that are now generally accepted:   
The discoveries of Newton and Leibniz were essentially independent, and although 
Newton was the first to develop the subject, Leibniz published his version first.   We 
should add that the discoveries by Newton and Leibniz took place around 1665 and 
1673 respectively, Leibniz’ work was published in 1684 while Newton’s was published 
1736, nearly a decade after his death.   
 
Rather than dwell on the dispute over priorities, we shall discuss a few substantive 
similarities and differences between the work of Newton and Leibniz. 
 
Many of the similarities were already mentioned in the reasons why Newton and Leibniz 
are given credit for creating calculus.  One additional similarity is that each used both 
differentiation and integration to solve difficult and previously unsolved problems.  Both 
also proved many of the same basic results; e.g., the standard rules for differentiating 
functions, the Fundamental Theorem of Calculus, and the basic formal integration 
techniques which appear in calculus textbooks.  On the other hand, Newton and Leibniz 
clearly had different priorities and these can be seen in the differences between their 
approaches and conclusions. 
 

1. The fundamentally important binomial series expansion for 
(1+x)r, where r is an arbitrary real number and |x|  <  1, is 
solely due to Newton. 

 
2. Newton used the words fluxion and fluent to denote the 

derivative and integral, and he denoted derivatives by placing 
dots over variables.   Leibniz ultimately adopted the dx 
notation and the integral sign that are used today. 

 
3. Newton was primarily interested in the uses of calculus to 

study problems involving motion, while Leibniz’ work and 
interests involved finding extrema and solving differential 
equations. 

 
4. Newton discovered the rules and processes of calculus by a 

study of velocity and distance, while Leibniz did so via 
algebraic sums and differences. 

 



5. Newton used infinitesimals as a computational means, while 
Leibniz used them directly. 

 
6. Newton’s priority was differentiation while Leibniz’ was 

integration. 
 

7. Newton stressed the use of infinite series to express functions, 
while Leibniz preferred solutions that could be written in finite 
terms. 

 
8. Leibniz gave more general rules and more convenient 

notation. 
 
The other important writings of Newton and Leibniz reflect some of the differences 
mentioned above.   Leibniz wrote many lengthy and influential works on philosophy, 
while Newton wrote several important books on the sciences.  The latter include his best 
known work, Philosophiæ naturalis principia mathematica (The Mathematical Principles 
of Natural Philosophy), which remains of the most important books in the sciences ever 
written.  In this book he developed the laws of motion using calculus and used them to 
derive Kepler’s laws of planetary motion.  An extremely brief but informative summary of 
Principia is available at the following online site: 
 

http://www.answers.com/topic/newton-s-principia 
 
 
We have already mentioned some common aspects of Newton’s and Leibniz’ legacies 
with respect to calculus, and we shall conclude this discussion by mentioning some 
noteworthy differences:   
 

1. Newton’s applications of calculus ultimately determined the 
direction of subsequent work in mathematics and physics. 

 
2. Leibniz’ formulation of calculus ultimately determined how the 

mathematical aspects of this work were formulated (however, 
Newton’s dot notation for derivatives is still used sometimes in 
physics to denote derivatives with respect to time).   

 
 
 

Subsequent developments 
 
 
We shall concentrate on points related to the material covered in first year calculus 
courses.  Mathematics has continued to grow rapidly during the 300+ years following the 
invention of differential and integral calculus by Newton and Leibniz, but most of this 
history is well beyond the scope of the present course. 
 
The Bernoulli family.  The Bernoulli brothers – James or Jacob or Jakob or Jacques 
(1655 – 1705) and Jon or Johann or Jean (1667 – 1748) made numerous important 
contributions to the subject soon after its development and publication.   One small item 



worth noting is that the result known as L’Hospital’s Rule was originally due to John 
Bernoulli but was sold to G. de L’Hospital (1661 – 1704) for an influential textbook the 
latter published in 1696.  The Bernoullis were particularly effective at applying the 
methods of differential and integral calculus to analyze new types of mathematical 
questions that had previously been out of reach.   One example is the brachistochrone 
problem, which asks for the curve of quickest descent connecting two given points in a 
vertical plane; it turns out that a portion of the cycloid curve is a solution to this question.  
The Bernoullis made several other early contributions to the study of differential 
equations.   
 
Solid analytic geometry.  When plane analytic geometry was developed during the 17th 
century, researchers like Fermat and P. de la Hire (1640 – 1718) were convinced that 
one could handle questions in 3-dimensional geometry similarly by adding one more 
coordinate and making suitable adjustments to various formulas, but the details of this 
program were not completed until the 18th century.  Names associated with this work 
include J. Hermann (1678 – 1733),  A. – C. Clairaut (1713 – 1765)  and L. Euler. 
 
Infinite series.  We note first that the standard infinite power series for functions are 
named after B. Taylor (1685 – 1731) and C. Maclaurin (1698 – 1746); the usual 
attributions are an accident of history through no fault of Taylor or Maclaurin.   
 
First year calculus books always mention that the infinite series  
 

 
 
converges, but often the value of the sum is not mentioned.  In fact, Euler proved the 
unexpected relationship 
 

 
 
using elaborate manipulations of infinite series.  This was just one in a sequence of 
increasingly bold and dramatic summation formulas that Euler derived.  Such 
conclusions ultimately led Euler to carry out many speculative operations on infinite 
series that do not converge.  In particular, he suggested that ½  is a reasonable value to 
take as the sum of the following divergent series: 
 

1   +   (– 1)   +   1   +   (– 1)   +   1   +   (– 1)   +   1   +   (– 1)   +   … 
 
This may seem absurd, but it turns out that one can find some good mathematical 
justifications for attaching this value to the divergent series.   However, it should not be 
surprising that eventually one encounters supposed formulas that lead to contradictory 
answers.  Examples of this sort are somewhat artificial, but one can also construct 
important classes of physical problems involving infinite series with closely related 
convergence difficulties.  This leads naturally to the next topic 
 
 
 



The logical soundness of calculus 
 
 
Aside from the questions on infinite series that we have just raised, there are even more 
important issues regarding calculus that were problematic during the 17th and 18th 
century.  The most important of these was the use of infinitesimals.  Not surprisingly 
there were many questions about the logical consistency of using objects that were 
smaller than any finite positive quantity but still positive.   Proponents of calculus 
attempted to explain this concept, but such explanations didn' t really make much sense 
to mathematicians of that time; even though the computational methods of Newton and 
Leibniz were getting the right answers, regardless of whether the explanations were 
understandable.  Probably the most famous critique of infinitesimals was The Analyst, by 
Bishop G. Berkeley (1685 – 1753); mathematicians and others realized the validity of his 
claims.  Progress in mathematics continued at a rapid pace, but Berkeley’s criticisms 
reinforced earlier views of many that calculus needed a more secure logical foundation.  
With the development of calculus, mathematics had moved into new territory, not just 
abstracting familiar ideas but also contributing new concepts of its own.  It was also 
rapidly accepting an ever expanding collection of ideas and methods that were 
increasingly removed from simple experience.   In order to handle such new concepts it 
is necessary to maintain strict logical standards.  Of course, the same applies to the 
elaborate manipulations with infinite series that mathematicians had been carrying out. 
 
The resolution of the problems with infinitesimals led mathematicians to base calculus 
on the concept of limit.  This need had already been tentatively anticipated by Wallis and 
Gregory.  J.  L. D’Alembert (1717 – 1783) proposed a definition of limits, but the wording 
needed to be made more precise.  The decisive step in this direction was due to A. – L. 
Cauchy (1789 – 1857). In particular, his text of 1821 included the concept of limit (a 
concept which had not appeared explicitly in the work of Newton or Leibniz) in a form 
very close the one in use today. His definition of derivative is precisely the one used 
today. Cauchy also stressed that the definite integral should be defined as the limit 
certain algebraic sums and is independent of the definition of the derivative. It is from 
Cauchy' s view of the integral that broad modern generalizations of this concept have 
developed.  The modern definition of limit using δδ and εε is due to K. Weierstrass (1815 – 
1897).   
 
Despite their doubtful logical status, users of mathematics continued to work with 
infinitesimals, probably motivated by their relative simplicity, the fact that they gave 
reliable answers, and an expectation that mathematicians could ultimately find a logical 
justification for whatever was being attempted.  During the nineteen sixties Abraham 
Robinson (1918 – 1974) used extensive machinery from abstract mathematical logic to 
show that one can in fact construct a number system with infinitesimals that satisfy the 
usual rules of arithmetic.   However, the advantage of Robinson’s concept of infinitesimal 
– its logical soundness – is balanced by the fact that, unlike 17th century infinitesimals, it 
is neither simple nor intuitively easy to understand. 
 
The definition of limit was one step in strengthening the mathematical foundations for 
calculus.  Mathematicians also came to realize that functions could behave in bizarre 
manners that they had not previously considered, and it was necessary to take such 
examples into account.  Stronger logical justifications were needed for many basic points 
in calculus; for example, the fact that continuous functions on open intervals are 
bounded and the Intermediate Value Property for continuous functions.   Further thought 



was needed to understand the problems that arose if one was too casual when working 
with infinite series.  Such questions were not just academic, for in fact they arise quickly 
in connection with real world problems like studying wave motion.   Ultimately a secure 
logical foundation for calculus required a logically rigorous description of the real number 
system, which in turn required a theory of infinite sets. The necessary machinery was 
provided by R. Dedekind (1831 – 1816) and G. Cantor (1845 – 1918). 
 


