SOLUTIONS TO EXERCISES FOR
MATHEMATICS 153 — Assignment 1

Spring 2005

Problems from Burton, p. 26

3.  The fraction 1/6 is equal to 10/60 and therefore the sexagesimal expression is 0;10.
To find the expansion for 1/9 we need to solve 1/9 = z/60. By elementary algebra this means
9z =60 or z = 6%. Thus

6 2 1 6 40 1
T % T3% _ 60 ' 60 60
which yields the sexagsimal expression 0; 10,40 for 1/9.
Finding the expression for 1/5 just amounts to writing this as 12/60, so the form here is 0;12.
To find 1/24 we again write 1/24 = z/60 and solve for = to get z = 23. Now 3 = 33 and
therefore we can proceed as in the second example to conclude that the sexagesimal form for 1/24
is 0:2,30.
One proceeds similarly for 1/40, solving 1/40 = /60 to get z = 1
discussion this yields the form 0;1,30.
Finally, the same method leads to the equation 5/12 = /60, which implies that 5/12 has the

sexagesimal form 0;25.m

%. Much as in the preceding

4.  We shall only rewrite these in standard base 10 fractional notation. The answers are in
the back of Burton.
(a) The sexagesimal number 1,23,45 is equal to 1 x 3600 + 23 x 60 + 45.

(b) This number is equal to
12 + 5 + 45
60 60 x 60
(c) This number is equal to the previous one divided by 60.

(d) This number is simply equal to the first one divided by 60.

5. The general rule is to shift the semicolon one place to the right, so in this particular
example the product is 1,23,45;6.

Additional problem 1. Express the ordinary fractions

11 1
> 25 ? 100 125

in sexagesimal form.
SOLUTION.
We shall do these in order.

To find the sexagesimal form for 2/9 we have to write it as 2/60. We can find z by the usual
method for solving proportion equations: 9z = 2 x 60 = 120 = = = 120/9. which translates to
z —131. Now 1/3 = 20/60, so this means we have

2 13 20
- = = — = 0;13,20 .
9 60 + 60 x 60 T
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We approach 1/25 in the same way. The solution to the equation 1/25 = /60 is z = 22. Since

2 = 24/60 we have
1 2 24
= = = = 0;2,24.
25 60 + 60 x 60 02,

For the next two we have fractions that are clearly less than 1/60, so we should start with 60 x 60 =
3600 instead. Thus we want to start by solving 1/100 = 2/3600. This has the solution z = 36 and
therefore the sexagesimal form is 0;0, 36.

Finally, for the last one we begin by solving 1/125 = z/3600, and we find in this case that z = 28%.
Now 4/5 = 48/60 so we must have

1 28 48
195 ~ 60x60  60x60x60 0;0;28,48 .

Additional problem 2. The number 1;24,51,10 appears on a Babylonian cuneiform tablet.
Express it on more familiar terms.

SOLUTION.

By definition this is equal to

1+%+ 51 N 10 B 1+24x3600+51x60+10 B
60 60 x 60 60 x 60 x 60 60 x 60 x 60 N
- 86400 + 3060 +10 N 89470
60 x 60 x 60 B 216000

If we compute this number in decimals, we see that it is equal to 1.41421296296296296... and if we
compare this to v/2 = 1.4142356... we see that this must have been an approximation to the square
root of 2 that is accurate to four (of our) decimal places.n

Additional problem 3. Prove the assertion in the notes that a rational number r satisfying
0 < 7 < 1 has only finitely many Egyptian fraction expansions with a fixed length L > 1. [Hint:
Proceed by induction on the length. What happens if L = 17 Suppose that the result is known for
length L and proceed to length L + 1. If one has an Egyptian fraction expansion of length L + 1,
why must one of the summands be greater than r/(L+1)? Show this implies that the denominator
of at least one summand is < (L + 1)/r. For each positive integer m < (L + 1)/r why do the
induction hypothesis and the condition 0 < % < r imply that the fraction r — % has only
finitely many Egyptian fraction expansions of length L? How can one conclude the proof using this

information?]
SOLUTION.

Let’s start with L = 2. How many ways are there of writing a fraction r satisfying 0 <r < 1 as a
sum of two unit fractions? If we have an equation of the form
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where for the sake of definitess we shall take a < b, then we have inequalities
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which imply that
1 2
- < a < -.
r r
Now there are only finitely many choices of integers a for which this inequality is true. For each such a

consider the remainder r — % This also lies between 0 and 1. If it is a unit fraction of the form 1/b,
then we have an Egyptian fraction expansion
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but then again the remainder need not have this form. Regardless of whether or not it does, for each
choice of a there is at most one way of writing 7 in Egyptian form such that 1/a is one of the terms.
This means that there can only be finitely many Egyptian fraction expansions whose length L is equal
to 2.

To prove the result for all L using finite induction, we need to show that if the conclusion is true
for expansions of length L then it is true for expansions of length L+ 1. So suppose we have a value of
L for which the conclusion is known to be true. If we are given an Egyptian expansion of r with length
L + 1, one of the terms in this expansion, say 1/a, is larger than all the others. As in the case L = 2,

this means that
1 T

- >

a L+1

for otherwise every one of the summands would be less than or equal to the right hand side, and only
one of the L + 1 terms could be equal to this. In such a situation the entire sum must be strictly less
than . Armed with the above inequality for the largest term in the expansion, we proceed as follows:
Combining the displayed inequality with the basic relation % < r, we conclude that

L+1
- < a <
r r

and see that there are only finitely many possibilities for the largest term in an Egyptian expansion of
length L 4+ 1. As before, for each such a consider the remainder r — % This also lies between 0 and 1.
By the hypothesis on expansions of length L, for each choice of a there are only finitely many ways of
expanding the remainder as an Egyptian fraction of length L.

Suppose now that we fix a and consider the finite collection of expansions

1
r = —
n;
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given by the previous paragraph. Every Egyptian fraction expansion of r containing the term 1/a is in
this list; in fact, there may be other non-Egyptian type expansions in the list because it is possible that
there is a summand % in the sum of L terms, but in any case we see that there are only finitely many
ways of writing r as an Egyptian fraction of length L + 1 such that 1/a is one of the terms. But there
are only finitely many options for a, so this means there can only be finitely many ways of expressing
r by an Egyptian fraction expansion of length L 4 1. This proves the inductive step, and therefore the
conclusion is true for all L > 2.



Problems from Burton, p. 48

8. This is simply a matter of verifying an identity and checking it against the list in the
book, The expression for 2 % follows from 7 + 1 = 8, the expression for 5= follows from 35 =7 x 5
and 74+ 5 =12, and ﬁnally the expression for = follows from 91 = 13 >< 7 and 7+ 13 =20.=

13. This uses the identity

1 1 1

m  m+1 + m(m + 1)

which can be checked directly. If n divides m + 1 this means that m + 1 = n - ¢ for some ¢, If we
multiply both sides of the displayed equation by n, substitute the factorization of m + 1 into the
equation and simplify, we then obtain the identity

1
gm

+

Q| =

n
m

Additional problem 4. Express & as an Egyptian fraction for each p such that 2 < p < 10.
SOLUTION.

We shall try to do the first few these using the Greedy Algorithm.

The largest unit fraction less than ﬁ can be found by looking for the first integer which is
1

greater than the reciprocal 5 g 51. This integer is 6. Therefore the Greedy Algorithm gives &
as the first term and proceeds to con31der the remainder. But 13 % = % so the we obtain the
expansion % =1 st 66 right away.

Next cons1der . In this case the Greedy Algorithm gives 4 as the first term, and we compute
the remainder to be 3 _1= so that 3 = 4 + 44 in this case.

1= 44?
Now consider 141, in which case the Greedy Algorithm yields = as the first term and the
remainder is =z Thus we have = = = —|— % in this case.

4
33 1
In the case of 2 11> the Greedy Algorlthm still ylelds 3 as the ﬁrst term and the remainder is

. The latter is equal to 53 + 313, and thus we have % = —I— 11 + 33 in this case.
For ﬁ the Greedy Algorlthm ylelds = as the first term and the remainder is % Thus we

have % =3 + ﬁ in this case.
Turning to 11 a first application of the Greedy Algorithm yields = = % + % Rather than

proceed to apply the Greedy Algorithm directly to the remainder of 2 555 let s take the expansion we

had for ;7 and multiply it by = to obtain 232 = 213 . We then get the expansmn = —|— + @
in this case
We can dispose of the remaining cases similarly. For %, combine % = % + % and 25—2 =
—+22+ Z to obtainﬁ——+ +f2+ in this case.
N 7 _ 1 9 _ 1,1, 1 1
Simllarly, for 1D combinle0 T §g—|— 55 and » = —I— —1—1176 to Obtalilol_ =~ §1+ Zl—i_ i + 17
Finally, for 10 11, combine {7 = 5+355 and =4tstss —|-352 to obtain {] = 3+7+5+35+ 353

Problem from Burton, p. 59

9. (a) If we apply the formula in the exercise to each of the triangles AADC, ADCB,
ACBA, ABAD, we find that the sum of their areas is

%dcsinD + %cbsinC + %basinB + %adsinA.

4



Let X be the point where AC' and BD meet. Then we have the following equations:
area(AADC) = area(AAXD) + area(ADXC)

area(ADCB) = area(ADXC) + area(ACXB)

area(ACBA) = area(ACXB) + area(ABXA)

area(ABAD) = area(ABXA) + area(AAXD)
Now we also know that the area A of the quadrilateral ABC D is equal to

area(ADXC) + area(ACXB) + area(ABXA) + area(AAXD)

and if we add the previous four lines we find that the sum of the areas of AADC, ADCB, ACBA
and ABAD is equal to 2 A. Substituting this into the first expression in this exercise we obtain
the formula

2A = %dcsinD + %cb sin C' + %ba sin B + %adsinA

and if we divide both sides of this equation by 2 we obtain the area formula given in the exercise.n
(b) Since the sine of an angle between 0° and 180° is < 1, the formula in (@) implies that

A <I(dc + cb + ba + ad)

and the inequality in the exercise follows because the right hand side is equal to % (a+c¢)(b+d).

Furthermore if any of the vertex angles / A, / B, / C, / D is NOT a right angle, then the sine of
that angle is strictly less than one and this implies the inequality must be strict.m

Problems from Burton, p. 67

4. We need to solve the equations x + y = 10 and zy = 16 for  and y. Given that this is
a second degree system we can expect to find two solutions but for a meaningful solution of the
original physical problem both z and y must be positive.

The hint suggests using the formula
(-9 = (@+y)" — 4y
and if we substitute the given equations into the right hand side we obtain the equation
(x—y)? = 10> — 416 = 36.

Thus we have x —y = £ 6. If z —y = +6, the solution we obtain is z = 8,y = 2, whileif x —y = —6
we obtain the solution y = 8,z = 2. In particular, this means that we have a rectangle that is 8 by
2.

6. (a) In this case use the formula
(z-9)? = (z+y? — day

to find (z + y)2. Specifically, we have 36 = (z + y)2 — 64, which leads to z + y = + 10, whose
solutions are (z,y) = (6,2) and (2,6).



(b) Use the same formula as before, but substitute the numerical values for this specific problem
to obtain the equation 16 = (z +y)? — 84. Once again this leads to z +y = %+ 10, and the solutions
now are (z,y) = (7,3) and (3,7).=

(c) Once again use the formula, this time obtaining the equation (z —y)? = 64 — 60 = 4. Thus
we have z + y = 2, and the solutions for this problem are (z,y) = (5,3) and (3,5).n
Burton, p, 67: 4, 6, 13abc

13.  (a) The hint on page 68 of the text seems wrong, and since one already knows z it
is reasonable to approach this by substituting the first equation into the second. This yields the
equation

30y — (30—y)2 = 500
which after expansion and simplification reduces to
y? — 90y + 1400 = 0.
The roots of this equation are y = 70 and y = 20, and as noted before we are given z = 30.»

(b) Here we follow the hint on page 68 of the text and subtract the square of the first equation
from twice the second. The square of the first equation has the form z? + 2zy + y2 = 2500. If we
subtract this from 222 + 2y? + 2 (z — y)? = 2800 we obtain the following:

3z—-9y)? = 2% — 2zy + v2 + (z—y)? = 300

This implies z — y = +10. Combining these with the original equation z + y = 50, we obtain the
solutions (z,y) = (30,20) and (20, 30) depending upon the sign +.m

(c) In this problem we also follow the hint and substitute (z + y)? = (z — y)? + 4zy and
zy = 600 into the equation (z + y)? + 60 (z — y) = 3100. This yields the following quadratic
equation in (z — y):

(z—y)®> + 60(z—y) — 700 = 0
The roots of this equation are z — y = 10 and —70. If we substitute this into zy = 600 and solve
we obtain the solutions (z,y) = (30,20) and (—20, —30) when z —y = 10, and when z —y = —70
we obtain the solutions (z,y) = (=35 — 5v/73, 35 — 5v/73) and (—35 + 5v/73, 35 + 51/73).a

Additional problem 5. Exercise 5(b) on page 75 of Burton mentions an incorrect Babylonian
formula for the area of an isosceles trapezoid ABCD:
(a+c)-(b+d)
4
Here a and c are the lengths of the two parallel sides and b and d are the lengths of the nonparallel sides.
The files trapezoidABCD.* — where * = ps, pdf or jpg — give an illustration that is consistent with
Exercise 9 on page 58 of Burton.

area —

(1) Using the formula in the exercise on page 58, find the actual area of an isosceles trapezoid in
term of the lengths of the sides and trigonometric functions of the angle 6 at the vertex A.

[Recall that the nonparallel sides have equal length, the measures of the vertex angles at A and B
are equal, and the measures of the vertex angles at C' and D are supplementary to those at A and B;
recall that two angles are supplementary if their measures add up to 180°.]

SOLUTION.

Since supplementary angles have the same sines and all vertex angles are either supplementary
to Z A or have the same measure as Z A, it follows that sin A = sin B = sin C' = sin D. Thus the

formula reduces to
A = (a+c)(b+d)sinb.



(73) What is the ratio of the actual area to the figure given by the formula if the vertex angles at
A and B are 60° angles?

SOLUTION.

The formula says that the ratio of the actual area to the formula area is equal to sin 6. For
a 60° angle this sine is equal to % 3, and therefore the ratio of the actual to formula area in this
case is also equal to % V/3. This is approximately 87 per cent of the value predicted by the incorrect
formula.m



