SOLUTIONS TO EXERCISES FOR

MATHEMATICS 153 — Assignment 2

Spring 2005

PROBLEMS FROM BURTON, p. 98

3. By definition t, = (n? 4+ n)/2. We need to show that 9¢, + 1 is equal to t,, for some m.
Let’s see what happens if we substitute the expression for ¢,, into 9%, + 1.

2 9In? + 9n + 2 3n+1)(3n+2
9n+n +1:n-|—n+ :(n+)(n-|-):t3n+1
2 2
6. The number 1225 is equal to 352, and we follow the hint to write it as a triangular

number ¢,. According to the hint n is a root of the quadratic equation n? 4+ n — 2450 = 0. The
quadratic formula implies that the roots of the latter are equal to

—1++/1+4-2450  —-1+99
2 - 2

and hence 49 is the unique positive root. Therefore we see that 1225 = t49.m

Similarly, we check that 41616 = 2042 by some method, maybe using a calculator or table,
maybe educated guessing, maybe the old algorithm for finding square roots that used to be taught
in elemetary schools (which might be discussed later in this course). We must then find the positive
root of the quadratic equation n2+mn—83232 = 0, and this can be done using the quadratic formula:

-1++v1+4-83232  —-1£+332929  —-1+£577

2 2 N 2

The positive root of this pair is 288, and therefore we have shown that 41616 = togg.m
11.  (c¢) Follow the hint and write things out as

S kk+1) = Y K4k = k? + k=
k=1 k=1 k=1 k=1
n(n+1)(2n + 1) n(n+1) n(n+1)(n +2)
+ = ]
6 2 3
(d) Once again we use the hint:
Z": 1 1 ¢ ( 11 ) B
Za (2k—1)(2k + 1) 2 £ \2%—1 "~ 2%k+1
1 1 _ n
2 2n+1 2n+1



This is an example of a telescoping series. The second piece of the k" term cancels the first piece
of the next term for every k <n — 1=

PROBLEMS FROM BURTON, p. 112

2. Follow the hint, noting that ifz? +y? = 22 and 4+ y + 2z = 3 zy, then (z — 4)(y —4) = 8.
One could try to set up a system of quadratic equations, but in a simple case like this it is better to
do things by hand. Since we are looking for integral solutions, this means that each of z—4 and y—4
must be 1, 2, 4 or 8. Thus the possible solutions to check are (z,y) = (5,12), (6, 8), (8, 6)and(12,5).
In the first and last cases we have z = 13, while in the middle two we have z = 10. Which of these

choices for (z,y, z) also satisfy the equation z +y + z = % zy? Direct substitution shows that they
all do.m

3. Following the hint, if n is odd we need to check that

n® + (%( 2—1))2 = (%(n2+1))2

and if n is even we need to check that

We do these as follows:

2
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7. If we divide the equation y2 — 222 = 1 by z,2 we obtain

2
(yn> 5 _ 1
In _ = .
Tp x2
This means that y,, / z, will approach v/2 in the limit if we know that z, — oco. However, by
construction we know tht z,,y, > 0, and therefore the recursive relation z,, = 3z,_1 + 2yn_1

implies z,, > 3" 'z; = 2-3""1. Thus z, grows exponentially with n and as noted before this
implies that the sequence of fractions y,, / z, has a limit which is equal to V2.

18.  We first show that h satisfies the harmonic mean equation if and only if it satisfies (b):

Z‘Z = ¢ = bh-a) = alb-h) = h@ath) = 2ab >

2ab
at+b




Next we show that h satisfies (a) if and only if it satisfies the harmonic mean equation:

t_or 11 hma boh
a h  h b ha hb
hza _ ha _a
b—h  hb b

PROBLEMS FROM BURTON, p. 123

4. Since the point (z,%) lies on the intersection of the two parabolas we know that y? = 2ax
1 = a2y? = a2 (2az) = 2a3z. The real

and z2 = ay. If we square the second equation we obtain
solutions of this equation are z = 0 and = = cbrt(2) - a. Since the intersection point has a positive

first coordinate, the second solution is the one we want.m

PROBLEMS FROM BURTON, p. 478

3. (a) The sum of all the proper divisiors of p" is

so if p™ were a perfect number then the right hand side would be equal to p™. Multiplying both
sides of such an equation by (p — 1) clears out the fractions and yields p” —1 = (p — 1) - p". Now
the right hand side is at least p™, so this inequality cannot hold and we have a contradiction. The

problem arises because we assumed p™ was perfect, and therefore this cannot be true.s

(b) Following the hint, if p and ¢ are odd primes then p — 1 and ¢ — 1 are at least 2 so that

(p-1)-(¢-1) > 2-2 = 4.

If we expand the left hand side we obtain
pg —p—qg+1 >4
which shows that pg > p + g + 1. Therefore p g cannot be a perfect number.a

6. Since n is perfect we know that

Zdz?n

d|n

and if we divide everything by n we obtain
d
E - = 2.
n
d|n

We now make a change of variables, setting e = n/d. As d runs through all divisors of n, the new
variable e also runds through all divisors of n, so we may rewrite the second sum as

1
2522-

eln



11. To see that p cannot be part of an amicable pair, notice that it only has one proper
divisor; namely, 1. Thus the sum of the proper divisors is 1, and since the sum of the proper
divisors of 1 is 0 this means that p and 1 do not form an amicable pair.

Turning to p?, since we know its proper divisors are 1 and p, the other number in the amicable
pair would have to be p + 1. Thus we need to show that the sum of the proper divisors of p + 1
is not equal to p?. Now the largest proper divisor is %(p + 1). This has two consequences. First,
this is an upper bound on the size of any proper divisor. Second, there are at most %(p+ 1) proper
divisors of p + 1. Thus the sum of the proper divisors is less than or equal to the upper bound
on the number of proper divisors times the upper bound on the size of all such divisors. Upper
bounds for both are given by %(p + 1), so a bound for the sum of the proper divisors is given by
this number times itself, which is %(p +1)2, If p? and p + 1 were an amicable pair, this would mean
that p? would be the sum of all the proper divisors of p + 1 and consequently would be less than
or equal to %(p +1)2. However, if p is an odd prime then p > %(p + 1), and squaring this equation
yields

P’ > (p+1)°

which contradicts our previous conclusion. This means that p? cannot be part of an amicable pair.=



