SOLUTIONS TO EXERCISES FOR

MATHEMATICS 153 — Assignment 4

Spring 2005

PROBLEM FROM BURTON, p. 220

- 13. By the theorem on pages 215–216 of Burton, the equation ax + by = c with integral coefficients has integral solutions if and only if the greatest common divisor d for a also divides c.
- (a) The greatest common divisor of $6 = 2 \times 3$ and $51 = 17 \times 3$ is 3, but 22 is not divisible by 3, so there is no integral solution for the equation.
- (b) The greatest common divisor of $14 = 7 \times 2$ and $33 = 3 \times 11$ is 1, so the equation does have integral solutions.
- (c) The greatest common divisor of $14 = 7 \times 2$ and $35 = 7 \times 5$ is 7, and $91 = 13 \times 7$, so the equation does have integral solutions.

PROBLEMS FROM BURTON, p. 226

- 1. (b) Use the hint and part (a). We have a polynomial $x^3 + bx^2 + cx + d$ with a root r/s, where r and s are relatively prime integers, and therefore s divides a = 1 and r divides d. This means that $\pm r$ is a root of the equation, and by the previous sentence we know that r/d.
- 2. (b) By the results of the preceding exercise a rational root must have the form r/s where $r=\pm 1$ and s is equal to 2^m for some m satisfying $0 \le m \le 5$. In fact, $\frac{1}{2}$ and $-\frac{1}{4}$ are the roots of this polynomial, and the latter has multiplicity 2 (in other words, $(4x+1)^2$ divides the polynomial).
- (d) Every rational root of this monic polynomial must be an integer and a divisors of the constant term 24, and hence the only possibilities are ± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 8 , ± 12 , and ± 24 . Now the polynomial $p(x) = x^3 7x^2 + 20x 24$ is negative for x < 0, so we can narrow down the possibilities to the positive divisors of 24. Now p(x) > 0 if $x \ge 8$ and this reduces the options to 1, 2, 3, 4 and 6. One can then check directly that 3 is the only root.