
 

 

3. Euclid and the Elements 
 
 

(Burton, 4.1 – 4.3) 
 
 
Alexander the Great’s political empire fragmented shortly after his death in 323 B.C.E. , 
but the cultural effects of his conquests were irreversible and defined the course of 
future civilization.  Greek culture became an established framework for many areas of 
knowledge in the Mediterranean world, and mathematics was a particularly important 
example.  The founding of Alexandria in Egypt during and immediately after Alexander’s 
time reflects this change very clearly, for the city became a center of learning for the 
entire Hellenistic culture. 
 

Euclid of Alexandria (c. 325 – 265 B.C.E.) was one of the first mathematicians based in 
that city.  Of course, he is mainly known for organizing and presenting the basics of 
mathematical knowledge at the time into the thirteen volume work called the Elements, 
and because of this monumental work he is arguably the best known of all the ancient 
Greek mathematicians.  

 

The achievements and influence of the Elements 

 
Few books ever written have circulated as widely around the world as Euclid’s 
Elements, and much has been written about the advances in knowledge it represents 
and its continued significance ever since it was written.   Not surprisingly, some 
discussions of the Elements are more accurate and objective than others.  Therefore we 
shall begin by describing the features of the Elements that are generally regarded as 
the reasons it has remained such an important work for such a long period of time.   
 

As noted before, the purpose of the Elements was to give a systematic account of many 
basic and major mathematical results that were known at the time.  The work was not 
meant to be a complete account of mathematical knowledge at the time; in the words of 
Proclus, the work covers “those theorems whose understanding leads to knowledge of 
the rest.” 
 

Most of the material in the Elements had been well known to the Greeks before Euclid’s 
time.  However, evidence indicates that the overall organization of the Elements was 
due to Euclid, and that he personally created many of the proofs that appear in this work.  
In some cases these arguments and formulations probably filled gaps or weak spots in 
theorems and proofs that were known at the time. 
 

The single most important aspect of the Elements is its logical organization, which 
begins with definition for important concepts, formulates some basic properties of these 
concepts that will be assumed, and uses deductive logic to prove new conclusions or 
theorems.  These results were presented in a formally logical order, with each proof 
depending only on the results and assumptions that had appeared previously in the 
work.   Even if a statement appeared to be completely obvious, the rigorous logical 
structure demanded a formal proof. 
 

This axiomatic method of approaching a subject is the standard for scientific reasoning 
that is still used today, and it has also been used in a wide range of other disciplines 



 

 

over the ages.   In particular, many philosophical writings over the centuries have used 
the Elements as model for their reasoning.  Some particularly notable examples include 

Thomas Aquinas (c. 1225 – 1274) and numerous rational philosophers especially during 
the 17th and 18th centuries; in particular, this is very apparent in the writings of Baruch 

(or Benedictus) Spinoza (1632 – 1677).  Given the influence of the Elements on future 
work in many areas of human knowledge, it is not surprising that some view it as the 
most successful textbook ever written.   
 

Euclid’s formulations of various mathematical results quickly superseded some earlier 
ones and became established as definitive in many cases; with the passage of over 
2300 years, some of his versions have in turn been superseded by others for various 
reasons (for example, symbolic notation and concepts from algebra yield some major 
simplifications), but there are also many instances where his formulations and 
arguments are still the preferred ones today.  This is particularly true in elementary 
geometry, but it is also true in many parts of elementary number theory.   In each 
subject, quite a few of Euclid’s methods and ideas are still present to some extent, not 
for any sentimental value they may have but simply because they are still the most clear 
and direct ways to consider certain topics. 
 
Euclid’s logical framework for geometry is very concise and powerful, and his work was 
long believed many to provide an absolutely true description of the physical world and 
everything that one needs to understand it.  Questions along these lines attracted a 
great deal of attention from philosophers, especially during the 17th and 18th centuries, 
but several distinct mathematical and physical discoveries during the 19th and 20th 
centuries have shown that the geometric structure of the physical world is too complex to 
be described entirely and precisely in Euclidean terms.  However, small pieces of the 
physical world often appear to obey the rules of Euclidean Geometry up to a high degree 
of accuracy. 
 
Our knowledge of Euclid himself is extremely limited, and most of it comes from the 
writings of Proclus.   There are some often repeated anecdotes about him that appear in 
the paragraph beginning at the bottom of page 144 in Burton. 

 

Subjects covered in the Elements 

 
We have already mentioned that there are thirteen parts to Euclid’s Elements (formally 
called books, but they really are more like individual chapters of a single book).  A more 
detailed table of contents for the Elements is available online at the site 
 

http://aleph0.clarku.edu/~djoyce/java/elements/toc.html 
 

(in fact, the latter contains links to the entire Elements).  We shall summarize some of 
the main topics covered in this work. 
 
The first few books treat basic plane geometry, and the material in these books has 
served as the core content of geometry courses for most of the past 2300 years.  In 
particular, the first two books cover the basic properties of rectangles and triangles.  A 
great deal of the second book is devoted to geometric proofs of results that we now view 
as essentially algebraic; this reflects the philosophical problems that ancient Greek 

mathematicians had with irrationals.  It appears that much of the material in Book I was 
originally developed by Thales and the Pythagoreans, although in some cases the 



 

 

proofs seem clearly due to Euclid.  There is a lengthy commentary on the contents of the 

first two books on pages 145 – 168 of Burton; we shall say more about several aspects 

of this material later.  Pages 164 – 167 are devoted to the so-called golden section 
problem that has preoccupied mathematicians and others since the time of the ancient 
Greeks.  In geometric terms, given a segment AB, the objective is to find a point C 

between A and B such that the lengths of segments satisfy  |AC|   >   |CB|  as well 
as the following proportionality relation : 
 

|AC| / |AB|    =     |BC| / |AC| 
 

Algebraically this translates into a quadratic equation for x   =   |AC|/|AB| ,  specifically 
 

x 

2
   +   x   –   1     =     0 

 

and if one solves this equation for the positive root the answer is the number 
 

x    =    ½ ( sqrt (5) – 1)    =    0.61803398874989484820458683436564 …    
 

which is one less than the number φφφφ (phi) that is central to a fairly recent popular novel 
(D. Brown, The Da Vinci Code, Doubleday, 2003, ISBN 0–385–50420–9).   The 
discussion of Burton also explains the relevance of this number to constructing a regular 
pentagon by unmarked straightedge and compass. 
 

The third and fourth books study circles and their relations to other geometric figures.   
Much of this material was apparently known to Hippocrates of Chios.  The following 

result illustrates the types of questions studied in Book I I I : 
 

The measure of an inscribed angle is equal to one – half the 
degree measure of its intercepted arc. 

 

In the illustration below, the intercepted arc is the one inside angle ∠∠∠∠ABC. 
 

 

 

(Source :   http://jwilson.coe.uga.edu/emt725/ReviewCir/ReviewCir.htm ) 
 

See  http://www.pinkmonkey.com/studyguides/subjects/geometry/chap7/g0707401.asp  

for a standard (high school level) proof of this theorem.  The final result of Book I I I 
illustrates how far such questions are pursued: 



 

 

 

Suppose that we are given a circle, a point A outside the circle and two lines through A 
such that one is tangent to the circle at B and the other meets the circle at two points C 
and D such that C is between A and D.  Then the lengths of the segments satisfy the 
following equation: 
 

|AB| 

2
    =     |AC| ⋅⋅⋅⋅ |AD| 

 

 
 

Proofs of this and other results on intercepted arcs are given in Chapter 14 of the 
following (well – written but challenging) classic high school geometry text:   
 

E. E. Moïse and F. L. Downs, Geometry.  Addison – Wesley, Reading, MA, 1991. 

 

Book I V looks more closely at questions like finding circles passing through all three 
vertices of a triangle (circumscribing a circle about a triangle), finding circles tangent to 
all three sides of a triangle (inscribing a circle in a triangle), and constructions for certain 
geometrical figures by unmarked straightedge and compass.  The book ends with the 

construction of a regular 15 – sided polygon using only these tools. 
 

Book V covers material that was relatively new at the time.  We had already mentioned 

that the irrationality of sqrt (2)  was troublesome for Greek mathematicians, and an 
effective way of working with such numbers was not found until Eudoxus of Cnidus 
developed an approach to analyzing incommensurable proportions by means of rational 

numbers.   One can rephrase his approach by saying that a geometrical magnitude x is 
characterized by the following two pieces of rational data: 
 

1. The set of all positive rational numbers strictly less than x. 

2. The set of all positive rational numbers strictly greater than x. 
 

We shall discuss this and other aspects of the Condition of Eudoxus in an addendum to 
these notes.  For our present purposes it will be enough to state his criterion for 
concluding that two ratios of geometrical magnitudes are equal: 
 

The Condition of Eudoxus.  Two ratios of (positive real) numbers a/b and c/d are 

equal if and only if for each pair of positive integers m and n we have the following: 
 

m a  <   n b     implies     m c  <   n d     and       m a  >   n b     implies     m c  >   n d 
 

It is worthwhile to stop for a minute and consider what these mean.  The first statement 

is equivalent to saying that for every pair of positive integers m and  n we have 
 

a/b   <   n/m     implies     c/d   <   n/m 
 

while the second is equivalent to saying that for every pair of positive integers m and n 
we have  
 

     a/b   >   n/m     implies     c/d   >   n/m.  



 

 

 

The first of these amounts to saying that if  r  is a rational number greater than a/b, 

then  r is also greater than c/d.   As noted in addendum 3.A to these notes, the first 

condition implies that a/b ≥ c/d.   On the other hand, the second amounts to saying 

that if r is a rational number less than a/b then r is also less than c/d.   As noted in the 

addendum, this implies that a/b  ≤≤≤≤  c/d.  If we put these together we conclude that a/b 

must be equal to c/d. 

 

In Book V I the Eudoxus theory of proportions for incommensurables is applied to 
geometrical questions like the classical similarity theorems for triangles.   This was a 
major advance at the time; before the discoveries of Eudoxus, the Greeks were only 
able to prove similarity theorems for triangles in the commensurable case.  For a pair of 

triangles ���� ABC and ����DEF, this means that the common ratio of the lengths of the 

corresponding sides 
 

|AB|/|DE|    =    |AB|/|DE|    =    |AB|/|DE| 
 

is a  rational number.   Greek geometers were able to attack the similarity problem 
effectively using the following fact, which one might call the Notebook Paper Theorem. 
 

Suppose that we are give a family of distinct parallel lines  P1, P2, …  and two 

transversals  L  and  M  that are neither parallel or identical to these lines.  For each k  

let  A k be the point at which L and Pk intersect, and let  B k  be the point at which  M  and   

Pk intersect.  If all the segment lengths | A k A k+1| are equal to  a, for some fixed  a, then 

all the segment lengths | B k B k+1| are equal to b, for some fixed  b. 
 

 
 

Here is an illustration of how one can use the Notebook Paper Theorem in a simple case 
of similar triangles.  The picture below is taken from the following site: 
 

http://www.mccallie.org/myates/chapter_8.htm 
 



 

 

 
 
Suppose we know that lines AB and DE are parallel, so that the corresponding angles of 

���� ABC and ���� DEC have equal measurements, and let’s suppose also that the lengths 
of the segments AC, DC and EC are as given in the picture.   The basic similarity 

theorem predicts that the length of the fourth segment BC is  4.5  as suggested in the 
picture, but how do we reach this conclusion?  One way to do so is to construct a line 
through the midpoint X of the segment DC that is parallel to AB and DE.  This line must 

meet side BC at some point Y.  We then know that the lengths |CX|, |XD| and |DA| are 

all equal to 1, and therefore the Notebook Paper Theorem implies that the lengths |CY|, 
|YE| and |EB| are all equal.  Since the length |EC| is equal to 3,  it follows that this 

common length for the three segments on BC must be 1.5 , and therefore the length of 

BC must be equal to 4.5 .   More generally, suppose now that the lengths of AC and DC 

were m and n respectively for suitable positive integers m and n.  In this case one 

would construct a whole family of n mutually parallel lines containing AB and DE such 

that the segments they cut off on AC all have length equal to 1.  If the lengths of EC and 

BC are equal to p and q respectively, then the same sort of reasoning will show that    
 

q   =   p ⋅⋅⋅⋅  (m/n)  
 

or equivalently q/p   =   m/n. 
 

Of course this argument fails completely if the lengths of AC and DC are sqrt(2) and 1, 

but in these cases it is still possible to prove that  |BC|   =   sqrt(2) ⋅⋅⋅⋅  |EC|  by using the 

Condition of Eudoxus.   Further discussion of such a proof appears in addendum 3.B to 
these notes. 
 

Books V I I through I X of the Elements shift to an entirely different subject; namely, 
number theory.   Here is a partial list of topics: 
 

1. Prime numbers 

2. Factorizations of positive integers as products of primes 

3. Finding greatest common divisors of numbers using long division of 

integers (a  =  bq + r, where  r  lies between 0 and q – 1) 

4. Geometric progressions and their sums 

5. The existence of infinitely many prime numbers 

6. Perfect numbers, including Euclid’s construction of even perfect numbers 
 

A fairly detailed description of key points in these books is given on pages 170 – 181 of 
Burton. 



 

 

 

Book X of the Elements is an extensive and well organized discussion of irrational 
numbers, and it is almost certain that it went well beyond previous efforts to understand 
irrationals.  The first proposition in this book is in fact a simple but important observation 
about limits.  In modern language, it says that if we are given a sequence of positive 

numbers an such that an + 1 <  an / 2, then the limit of the sequence an is equal to 

zero.  This result plays a key role in Eudoxus’ derivation of the formula  A   =   π r
 2

 for 

the area of a region bounded by a circle whose radius is equal to r (this result is proved 

in Book X I I).   
 

The final three books (X I – X I I I) deal mainly with solid geometry.  Book X I extends 

basic notions of plane geometry to three dimensions; e.g.,  perpendicularity and 
parallelism for lines and planes in space, and the various types of solid angles (dihedral, 

trihedral, etc.) formed by planes.  Book X I I  goes in a quite different direction, using 
methods of Eudoxus to find areas and volumes of solid figures like cones, pyramids, 
cylinders and spheres; as noted above, this book also contains a proof of the familiar 

area formula   A   =   π r
 2

.  Finally, Book X I I I describes the five regular Platonic solids.  
The exposition in this final book is less rigorous than in the preceding ones, and some 
have suggested that it was added afterwards by Euclid or perhaps even someone else.  
Manuscripts claiming to be later books of the Elements exist, but there is a general 
agreement that these were not written by Euclid; there is additional further information 
about these items in addendum 3.D to these notes, 

 
Limitations of the Elements 

 
Despite the important achievements of the Elements, this work is not perfect by today’s 
standards.  While a study of its defects is appropriate, one should also remember that 
without the model for rigorous logical investigation that the Elements provided, it is 
questionable whether such weak points would have ever been discovered.   It is 
particularly noteworthy that, with a few exceptions, the logical defects in the Elements 
were not discovered until the 19th century. 
 

Man is doomed to err so long as he is striving. 
 

J. W. von Goethe (1749 – 1832),  Faust 
 

Some mathematical historians have criticized the Elements for lack of motivation for 
the subject matter and a similar lack of analyses of the proofs.  Such issues can be 
debated at length (certainly its usefulness as an effective textbook over many centuries 
seems beyond question), but we shall concentrate on strictly mathematical issues here. 
 

Although the Elements devotes considerable effort to formulating careful definitions, at 
the very beginning it attempts to define too much and later it does not give precise 
definitions of some basic ideas that are used throughout the work.   In mathematics it is 
not possible to define everything in terms of objects; the chain of definitions must stop 
somewhere and certain concepts must be taken as primitive or undefined.  For example, 
this applies to the notions of point, lines and planes in most axiom systems for Euclidean 
geometry; even in cases where one can define some of these, say lines and planes, in 
terms of other concepts, the latter are generally undefined.  A reader usually has (and 



 

 

indeed should have) some intuition about what these concepts represent physically, but 
none of this can appear in the formal mathematical setting.   Further comments about 
definitions in the Elements appear in the final paragraph on page 145 of Burton and the 
third full paragraph on page 147. 
 

Euclid’s work frequently discusses concepts like two points lying on the same or 
opposite sides of a line, one point on a line being between two others on the same line, 
a point lying in the interior of an angle or triangle, and so forth.  None of these notions is 
described formally in the Elements, and the corresponding lack of postulates about the 
properties of these concepts leaves some of the arguments incomplete.   We have 

already mentioned two results from Book I I I whose proper formulation requires a 
notion of betweenness for points and a precise description of the interiors of angles.  

Burton mentions another instance where interiors are needed in Proposition 16 from 

Book I (the Exterior Angle Theorem; see pages 152 – 153 of Burton).  It is possible to 
make such ideas logically rigorous by adding additional definitions and assumptions; we 
shall discuss this later. 
 

Insisting on filling the logical gaps might initially seem needlessly pedantic.  No one 
disputes the basic correctness of the geometric propositions we are considering, so one 
might ask how much it matters that concepts like betweenness, angle interiors, and 
points lying on the same or opposite sides of a line were not discussed rigorously.  
Perhaps this is just a “no harm, no foul” situation.  One simple response is that 
insufficient attention to such concepts can lead to arguments that look very much like 
those in the Elements but have ridiculously false conclusions.  One of the best known 
fallacies is a standard and apparently reasonable “proof” due to W. W. Rouse Ball 

(1850 – 1925), which falsely claims to show that every triangle is isosceles and is 

described on pages 54 – 55 of the following online reference: 
 

http://math.ucr.edu/~res/math133/geometrynotes2a.pdf 
 

Now if accepted standards of reasoning can lead to such an absurd conclusion, the 
reliability of any conclusions obtained by such methods must be viewed with suspicion.  
The following alternate reference for the purported proof also contains a few other 
geometric fallacies of a similar nature: 

 

http://www.jimloy.com/geometry/every.htm 
 

As noted in these online references, finding the mistake in the argument requires a 
patient examination of every assertion in the proof related to betweenness and the other 
notions mentioned above, and in fact the mistake results from using an incorrectly drawn 
picture to reach false conclusions.  We should note that the first of the online references 
contains more extensive discussions of the issues mentioned above. 
 

A second source of difficulties in the Elements is its use of the so – called “principle of 
superposition” which says that one can move objects without changing their shape.  
Apparently Euclid himself was uncomfortable with the idea of proof by superposition, 

which was used to prove the Side – Angle – Side Congruence Theorem for triangles.  

This method was only used at one other point (the proof of the Angle – Side – Angle 
Theorem) even though it could have been used equally well in other instances.  The 
logical framework for the Elements says nothing about moving figures around in the 
plane.  Many, perhaps most, axiom systems for Euclidean geometry avoid this problem 

by assuming the Side–Angle–Side congruence theorem; in cases where this is not 



 

 

done, some other assumption is needed in order to prove this result.  The corresponding 
discussion in Burton begins with the last paragraph on page 150.  Another detailed 

discussion appears in Section I I.4 of the following online document: 
 

http://math.ucr.edu/~res/math133/geomnotes2b.pdf 
 

Surprisingly, the first logical difficulty in the Elements appears in the proof of its very 
first result, which is the existence of an equilateral triangle with an arbitrarily specified 
base.  The basic idea is simple:  Starting with a segment [AB], one constructs a circle 
with center A and radius [AB], and then one also constructs a circle with center B and 
radius [AB].  Take a point C where these circles meet, and this will be the third vertex of 
an equilateral triangle which has AB as one of its sides. 

 

 (Source:  http://www.themathpage.com/aBookI/propI-1.htm ) 
 

The problem with this argument is that none of the basic assumptions at the beginning of 
the Elements say anything at all about intersecting circles!   In order to complete the 
proof of the very first proposition, one needs a result saying that if one circle contains 
one point inside another circle and one point outside that circle, then the two circles have 
a point in common.  A complete mathematical analysis of the situation is a bit too 
complicated to describe here, so we shall simply note that it is impossible to prove what 
is needed on the basis of what was assumed.   The first two full paragraphs on page 148 
of Burton discuss this further; a more complete mathematical discussion appears in the 
following book: 

 

H. G. Forder, The foundations of Euclidean geometry (Reprint 
of the original 1927 edition). Dover Books,  New York, NY, 1958.  

 

In view of the logical problems described above, it is rather ironic that Euclid had been 
criticized for centuries about something that was not a mistake; namely, the relatively 
complicated Fifth Postulate: 
 

5. That, if a straight line falling on two straight lines make the interior 
angle on the same side less than two right angles, the two straight lines, 
if produced indefinitely, meet on that side on which are the angles less 
than two right angles.  

 

It is particularly significant that this assumption is not needed or used until Proposition 

27 of Book I and that a substantial amount of material was developed up to that point.  
The assumption was avoided in the logical progression until it was no longer possible to 
do so.  For centuries mathematicians and others felt that this Fifth Postulate, which was 
far more complicated than any of the others (taking more words to state than all of the 
previous four!), was an imperfection that had to be corrected.  They felt that it was surely 
not necessary to include such a lengthy assumption when the others were so short and 
crisp.  Subsequent studies found equivalent assumptions that could be stated more 

simply (e.g., J. Playfair’s 18th century version, Given a line and a point not on it, there is 



 

 

a unique parallel line to the original line passing through the given point, which was first 
suggested 13 centuries earlier by Proclus), but none of these appeared to be a 
consequence of the other assumptions despite many deep and innovative investigations.  
When several mathematicians in the 19th century discovered that the Fifth Postulate 
could not be derived as a logical consequence of the other assumptions, or indeed of 
any version that is modified to overcome the logical inadequacies mentioned above, it 
became clear that the need for this postulate was an extremely important insight on 
Euclid’s part.  One important work leading to the discovery of the Fifth Postulate’s logical 

independence was due to G. Saccheri (1677 – 1733), the title of which claims this work 
vindicates Euclid by proving the Fifth Postulate from the others.  Despite some mistakes 
at the end, this work was an important contribution, but even so the claim of vindication 
is somewhat ironic.  The real vindication for Euclid is that the Fifth Postulate is 
logically indispensable rather than logically redundant.  The following online files 
are references for further information on this topic: 

 

http://math.ucr.edu/~res/math133/geometrynotes5a.pdf 
 

http://math.ucr.edu/~res/math133/geometrynotes5b.pdf 
 

http://math.ucr.edu/~res/math133/geometrynotes5c.pdf  
 

Finally, it seems worthwhile to mention a point that is not really a logical mistake but a 

logical insight that was apparently missed.  Proposition 5 of Book I proves that if we are 

given an isosceles triangle ���� ABC in which |AB|   =   |AC|, then the measures of the 

angles ∠∠∠∠ ABC and ∠∠∠∠ ACB are equal.  Euclid’s proof is described on pages 149 – 150 
of Burton, and it is a fairly lengthy argument which requires the construction of auxiliary 
points and line segments.  This argument contrasts very sharply with the very short and 
simple proof discovered by Pappus of Alexandria about 600 years later (given on pages 
150 – 151 of Burton).   Euclid’s argument involves the application of congruence 
theorems to two separate triangles, and Pappus’ argument involves the application of a 
congruence theorem to a single triangle with the vertices corresponding in a specific 
“nontrivial” way:  A corresponds to itself, B corresponds to C, and C corresponds to B. 

 
Repairing the logical deficiencies  

 
Given the importance of the Elements, it is not surprising that many nineteenth century 
mathematicians worked to bring the material up to modern logical standards.   The most 

widely known approach was formulated by D. Hilbert (1862 – 1943) at the end of the 

19th century.  It requires 6 undefined or primitive concepts (i. e.,  points, lines, planes, 

betweenness, congruence of segments, congruence of angles) and  21  separate 

postulates.  Here is an online reference: 
 

http://en.wikipedia.org/wiki/Hilbert's_axioms 
 

This axiom system reflects Euclid’s approach, which involves minimal use of number 
systems.  However, if one is willing to accept the real number system as given, then it is 
possible to reformulate the axioms in terms of points, lines, planes, distance between 
points, and angular measure with fewer assumptions, and with this system of axioms 
many proofs become much simpler.   The basic ideas for this were formulated by G.  D. 

Birkhoff (1884 – 1944) during the second quarter of the twentieth century, and Birkhoff’s 
specific axioms may be found in the link Euclid's Mathematical System at the following 



 

 

online site: 
  

http://www.math.uncc.edu/~droyster/math3181/notes/hyprgeom/hyprgeom.html 
 

The link above also has a listing of Hilbert’s axioms. 

 
Other works by Euclid 

 
A few other writings of Euclid have also survived, some in fairly complete forms and 
other only in fragments.  The work most closely related to the Elements is called Data, 
which includes numerous further results and problems related to the material in the 
Elements and may be viewed as a sort of supplement to the latter.  Other books treating 
geometrical topics include On Divisions, which describes ways of splitting geometrical 
figures into pieces with prescribed areas, and Phænomena, which discusses spherical 
geometry as it relates to observations in astronomy.  A book on optics has also survived.  
Several other books have been lost over time; various scholars have attempted to 
reconstruct portions of these lost works, but views on the accuracy of the attempted 
reconstructions are mixed.   
 
Further information on these other works, and the Elements itself, may be found at the 
following online site: 
 

http://www.obkb.com/dcljr/euclid.html 

 
Addenda to this unit 

 
There are four separate items.  The first (3A) discuses the algebraic version of the 
Condition of Eudoxus using familiar properties of real numbers, the second (3B) 
discusses the application of this condition to prove the basic similarity theorems for 
irrational proportions, the third (3C) describes a concise modern set of six axioms for 
plane geometry in the spirit of the Elements, and the fourth (3D) describes the five 
regular Platonic solids and the standard regular decompositions of the Euclidean plane 
into congruent regular polygons.   
 


