3.B. Geometric proportions and the Condition of Eudoxus

One important motivation for the Condition of Eudoxus was to consider geometric ratios involving incommensurable quantities; in modern language, these are lengths |WX| and $|Y Z|$ such that the quotient $|W X| /|Y Z|$ is not a rational number. A basic problem of this nature is depicted in the figure below:

In this picture the lines BD and CE are assumed to be parallel, and one wants to prove that

$$
|A B| /|A C|=|A D| /|A E| .
$$

If the left hand side is a rational number $\boldsymbol{p} / \boldsymbol{q}$, then standard manipulations of ratios show that

$$
|\mathrm{AB}| / p=|\mathrm{AC}| / q
$$

and ideas discussed in the main notes for this unit then imply that

$$
|\mathrm{AD}| / p=|\mathrm{AE}| / q
$$

which then quickly yields $|\mathrm{AD}| /|\mathrm{AE}|=p / q=|\mathrm{AB}| /|\mathrm{AC}|$. Of course, this argument breaks down completely for ratios $|\mathbf{A B |}| \mid \mathbf{A C |}$ which are equal to irrational numbers like sqrt(2), and we need the Condition of Eudoxus to handle such cases.

Here is a formal statement of Eudoxus' criterion for two ratios to be equal:
Two ratios of (positive real) numbers $\boldsymbol{a} / \boldsymbol{b}$ and $\boldsymbol{c} / \boldsymbol{d}$ are equal if and only if for each pair of positive integers \boldsymbol{m} and \boldsymbol{n} we have the following:

```
ma}<\boldsymbol{nb}\mathrm{ implies mc < nd
ma}>\boldsymbol{nb}\mathrm{ implies mc>nd
```

The derivation of this criterion is based upon a fundamentally important rational density property of the real numbers:

If we are given real numbers \boldsymbol{x} and \boldsymbol{y} such that $\boldsymbol{x}<\boldsymbol{y}$, then there is a rational number \boldsymbol{r} such that $\boldsymbol{x}<\boldsymbol{r}<\boldsymbol{y}$.
Further details about this implication are contained in the first supplement to this unit (see http://www.math.ucr.edu/~res/math153/history03a.pdf).

APPLICATION OF THE CONDITION OF EUDOXUS TO PROPORTIONALITY

QUESTIONS. Suppose now that we have triangles $\triangle A B D$ and $\triangle A C E$ as in the figure below, where $\mathbf{B D}$ is parallel to $\mathbf{C E}$; as in the figure we assume that the rays [$\mathbf{A B}$ and [$\mathbf{A C}$ are the same and likewise that the rays [AD and [AE are the same. Let $\boldsymbol{a}=|\mathrm{AB}|$, $\boldsymbol{b}=|\mathrm{AC}|, \boldsymbol{c}=|\mathrm{AD}|$ and $\boldsymbol{d}=|\mathrm{AE}|$. We want to use the Condition of Eudoxus to conclude that $a / b=c / d$.

Suppose first that \boldsymbol{m} and \boldsymbol{n} are positive integers such that $\boldsymbol{m a}<\boldsymbol{n b}$. We want to show that $\boldsymbol{m c}<\boldsymbol{n d}$. We can find points \mathbf{P} and \mathbf{Q} on the ray $[\mathbf{A B}=[\mathbf{A C}$ such that $|\mathrm{AP}|=\boldsymbol{m} \boldsymbol{a}$ and $|\mathrm{AQ}|=\boldsymbol{n b}$. Since $\boldsymbol{m a}<\boldsymbol{n} \boldsymbol{b}$, it follows that \mathbf{P} is between A and \mathbf{Q}. One can then find unique parallel lines to $\mathbf{B D}$ and $\mathbf{C E}$ through \mathbf{P} and \mathbf{Q}. These two lines will meet the line $\mathbf{A D}=\mathbf{A E}$ in two points \mathbf{R} and \mathbf{S}. A proper formulation of concepts like betweenness, the two sides of a line, and so on will imply that \mathbf{S} and \mathbf{R} also lie on the ray $[\mathbf{A D}=[\mathbf{A E}$ and that \mathbf{R} is between \mathbf{A} and \mathbf{S}.

The proportionality results in the commensurable case now imply that

$$
\begin{gathered}
|A R| /|A D|=m=|A P| /|A B| \text { and } \\
|A S| /|A E|=n=|A Q| /|A C| .
\end{gathered}
$$

Therefore $|\mathbf{A R}|=\boldsymbol{m c}$ and $\mid \mathbf{A S |}=\boldsymbol{n d}$ also hold. By observations in the previous paragraph we know that $|\mathbf{A R}|<|A S|$, and thus we may use the preceding sentences to rewrite this as $\boldsymbol{m} \boldsymbol{c}<\boldsymbol{n d}$. To summarize, we have now shown that $\boldsymbol{m a}<\boldsymbol{n b}$ implies $\boldsymbol{m c}$ < $\boldsymbol{n d}$.

If we have $\boldsymbol{m a}>\boldsymbol{n b}$, then we may proceed similarly. The argument is basically the same except that \mathbf{Q} will be between \mathbf{A} and \mathbf{P}, and this will in turn imply that \mathbf{S} is between A and R. Following the same line of reasoning in this case, one concludes that ma> $\boldsymbol{n b}$ implies $\boldsymbol{m c}>\boldsymbol{n d}$. Therefore we have established both parts of the Condition of Eudoxus, and consequently we have shown that $\boldsymbol{a} \mid \boldsymbol{b}=\boldsymbol{c} / \boldsymbol{d}$; by definition of the numbers $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$ in this equation, the desired proportionality equation $|\mathrm{AB}| /|\mathrm{AC}|=$ |AD|/|AE| is an immediate consequence.

