
 

 

4.  Alexandrian mathematics after Euclid — I I I 
 
 
Due to the length of this unit, it has been split into three parts.  This is the final part, and 
it deals with other Greek mathematicians and scientists from the period. 
 

The previously described works or Archimedes and Apollonius represent the deepest 
and most original discoveries in Greek geometry, and indeed they pushed the classical 
methods to their limits.  More powerful tools would be needed to make further advances, 
and these were not developed until the 17th century.  Much of the subsequent activity in 
ancient Greek mathematics was more directed towards developing the trigonometry and 
spherical geometry needed to do observational astronomy and studying questions of an 
arithmetic nature. 

 
Eratosthenes of Cyrene 

 
Eratosthenes (276 – 197 B.C.E.) probably comes as close as anyone from this period to 
reaching the levels attained by Euclid, Archimedes and Apollonius.   He is probably best 
known for applying geometric and trigonometric ideas to estimate the diameter of the 

earth to a fairly high degree of accuracy; this work is summarized on pages 186 – 188 of 

Burton.   Within mathematics itself, his main achievement was to give a systematic 
method for finding all primes which is known as the sieve of Eratosthenes.  The idea is 

simple — one writes down all the numbers and then crosses out all even numbers, all 

numbers divisible by 3, and so on until reaching some upper limit — and whatever is 

left must be either 1 or a prime.  Although there has been a very large body of research 
on the distribution of prime numbers within all the positive whole numbers during the 
past two centuries, for many purposes Eratosthenes’ sieve is still one of the best 

methods available.  A picture of this sieve for integers up to 100 appears on page 186 of 

Burton.  Here is a link to a larger sieve going up to 400; this one is interactive, and one 

can actually see the workings by clicking on the primes up to 19 in succession. 
 

http://www.faust.fr.bw.schule.de/mhb/eratosiv.htm 
 

Here are some links for important results on the distribution of primes: 
 

http://mathworld.wolfram.com/PrimeCountingFunction.html 
 

http://mathworld.wolfram.com/PrimeNumberTheorem.html 
 

 
Aristarchus of Samos 

 
Aristarchus (c. 310 B.C. –  c. 230 B.C.) is best known for challenging conventional 
beliefs that the earth was the center of the universe.  He is also recognized for his 
extensive study of large scale astronomical measurements like the sizes of the sun and 
the moon and their distances from the earth, and his conclusions about the size of the 
sun may have motivated his sun – centered theory of the universe.  Here is a summary 
of his conclusions:   
 

http://www.astro.cornell.edu/academics/courses/astro2201/aristarchus.htm 
 



 

 

Aristarchus’ computations suggest familiarity with simple versions of expressions known 
as continued fractions.  These expansions of numbers have the form 

 
 

where  a0  is an integer and all the other numbers  ai  ( i  >  0 )  are positive integers.  
Clearly every finite sum of this type is a (positive) rational number, and a basic result in 
the theory of continued fractions implies that every positive rational number has exactly 
two expansions of this form;  to see the lack of absolute uniqueness, note the if a 

rational number has a finite expansion with nested rational denominators [ a1 , … , am ] 

with am >  1   also has a second expansion whose nested rational denominators are 

given by [ a1 , … , am – 1, 1].   It is also possible to consider infinite  partial fraction 
expansions, and in fact there is a one – to – one correspondence between such objects 
and positive irrational numbers (hence every positive irrational number has a unique 
expansion of this type); these representations of a number are noteworthy because their 

initial segments (formed by suppressing all sufficiently large ai) yield excellent rational 
approximations to the given irrational number.  Some examples of partial fraction 
computations appear in a supplement to this unit. 
 

Continued fraction expansions are useful in several contexts; for example, they have 
important applications to finding solutions for Pell’s equation, which was mentioned 
earlier; the general method for finding solutions was  described by the Indian 
mathematician Bhaskara (Bhaskaracharya, 1114 – 1185), and a rigorous proof that 
solutions always exist — using continued fractions — was first given by J. – L. Lagrange 
(1736 – 1813).  Here are a few printed and online references for further information (in 
particular, the book by Khinchin is a classic which is written at an elementary level): 

 

A. Ya. Khinchin, Continued Fractions.  Dover, New York, 1997. 
 

A. M.  Rockett and P. Szüsz, Continued Fractions.  World 
Scientific Publishing, River Edge, NJ, 1992. 

 

http://en.wikipedia.org/wiki/Continued_fraction 
 

http://mathworld.wolfram.com/ContinuedFraction.html 
 

http://archives.math.utk.edu/articles/atuyl/confrac/ 
 

http://www-math.mit.edu/phase2/UJM/vol1/COLLIN~1.PDF 
 

http://www.cut-the-knot.org/do_you_know/fraction.shtml  

 
Trigonometry and spherical geometry in Greek mathematics 

  
We have already mentioned the increasingly prominent role of trigonometric studies in 
Greek mathematics and the links to astronomy.  Many individuals who contributed to one 



 

 

of these fields also contributed to the other, and a great deal of work was done to 
tabulate values of trigonometrically related functions.  Two particularly important names 

in this respect are Hipparchus of Rhodes (190 – 120 B.C.E.), to whom we owe concepts 

of latitude and longitude (and possibly the 360 degree circle), and Claudius Ptolemy (85 

– 165 A.D.), whose Almagest was the definitive reference for both astronomers and 
navigators until later parts of the 16th century.  Incidentally, one can see from the dates 
of his lifetime that Claudius Ptolemy was not a king from the Ptolemaic dynasty that 
ruled Egypt during the time between the death of Alexander the Great and the conquest 

of Egypt by Octavian (=  Caesar Augustus, 63 B.C.E. – 14 A.D.) around 30 B.C.E. with 

the defeat of Mark Antony (83 B.C.E. – 30 B.C.E.) and Cleopatra V I I  Philopator (69 
B.C.E – 30 B.C.E., reigned 51 B.C.E – 30 B.C.E.). 
 

Thanks to the work of individuals like Hipparchus and Ptolemy, Greek mathematicians 

constructed extensive tables of the chord function crd, whose value at an angle θθθθ  is the 

length of a chord in a circle of radius 1 that intercepts an arc with angular measure θθθθ .  
 

 
 

Of course, today we usually do not have separate tables for crd θθθθ ,  but we can find 

easily it by observing that crd θθθθ  is just twice the sine of ½θθθθ .   

 
Spherical geometry 

 
Given the role of trigonometry in astronomical observations, one should more or less 
expect that Greek mathematicians were acquainted with many aspects of spherical 

geometry.  The work of Menelaus of Alexandria (70 – 130 A.D.) is particularly significant 
in this respect and summarizes the knowledge of spherical geometry in ancient Greek 
mathematics.   There is an extensive body of results in spherical geometry and 
trigonometry that has remarkable similarities to plane geometry in some respects but 
remarkable differences in others.  On the surface of a sphere, the shortest distance 

between two points is along a great circle arc (i.e., a circle whose center is also the 
center of the sphere), and accordingly spherical triangles are formed using three great 
circle arcs.  There are congruence theorems for such triangles that are analogous to the 
standard congruence theorems for plane triangles, there are analogs of results like the 

Law of Sines and the Law of Cosines, but there is also an Angle – Angle – Angle 

congruence theorem for spherical triangles.  At first the final Angle – Angle – Angle 
theorem may seem surprising, but it reflects two important ways in which spherical 
triangles differ from plane triangles.  The sums of the measures of the vertex angles are 

always greater than 180
o
, and in fact their areas are proportional to the excess of the 

angle sum over 180
o
; thus if the three angles have equal measures, then the triangles 

have the same area, and since we know that two triangles in plane geometry with equal 

angles and equal areas are congruent, the Angle – Angle – Angle congruence theorem 



 

 

is not really all that shocking.  Further information on these topics from spherical 
geometry is discussed in the following online file: 
 

http://math.ucr.edu/~res/math133/geometrynotes5a.pdf 
 

 
Other prominent contributors 

 
One other widely recognized name from the same period is Heron (or Hero) of 

Alexandria (10 A.D. – 75 A.D.).  Today he is best known for the formula (Hero’s 
formula) giving the area of a triangle in terms of the lengths of its sides 
 

AREA   =    sqrt (  s (s – a) (s – b)  (s – c) ) 
 

where  a, b, c  are the lengths of the sides and the semiperimeter s is equal to the 

familiar expression  ½ (a + b + c), which of course is equal to half the perimeter of the 

triangle.  This result appears in several of his books with a derivation in his Metrica.  A 
derivation of Heron’s Formula appears on pages 8 – 9 (which are numbered 150 – 151) 
of the following online document: 

 

http://math.ucr.edu/~res/math133/geometrynotes3c.pdf 
 

There are statements (particularly in Arab commentaries) that Heron’s Formula had 
been known to earlier mathematicians including Archimedes, but Heron’s proof is the 
earliest one that has survived (so far as we currently know).  Heron’s interests were 
extremely wide ranging, and he was particularly adept at applications of mathematical 
ideas to other areas including mechanics and geodesy.  His analysis of reflected light 
very closely anticipated P. Fermat’s minimum principle in optics nearly 1600 years later.  
One reflection of Heron’s broad interests in other subjects is how he mixed approximate 
and actual results to a degree one rarely finds in Greek mathematics.    
 
Yet another noteworthy mathematician from this period was Nichomachus of Gerasa 

(c. 60 – c. 120 A.D.), whose Introductio Arithmeticæ gave a systematic account of 
arithmetic which was independent of geometry and was an influential work for 14 
centuries (Gerasa, now called Jerash, is in the northwest part of the Kingdom of Jordan).  
A more detailed discussion of his legacy appears on page 94 of Burton. 

 
Mathematics and the Romans 

 
Given the enormous historical importance of Roman civilization, it is very remarkable 
that their impact of the development of mathematics was extremely limited and perhaps 
almost negligible.  Of course, Greek mathematics was active at the same time, and as 
indicated by the following quote from Cicero (Marcus Tullius Cicero, 106 – 43 B.C.E.) the 
Romans were content to let the Greeks have this subject for themselves. 
 

With the Greeks geometry was regarded with the utmost respect, and 
consequently none were held in greater honor than mathematicians, but 
we Romans have delimited the size of this art to the practical purposes 
of measuring and calculating.  [From Cicero’s  Tusculan  Disputations ] 

 

To put this into proper context, it is important to note that Cicero was well – versed in 
Greek scholarly writings, and his own work shows a clear appreciation for the Greek 



 

 

mathematical legacy.   There were also a few other Roman authors whose writings show 
significant influence from Greek mathematics.  One particularly important example was 

Vitruvius (Marcus Vitruvius Pollio, c. 80 – 25 B.C.E.), whose treatise on architecture (De 
Architectura), which applied Greek geometry very systematically to analyze the sorts of 
geometric designs and precision drawing that are needed for architectural purposes.  
For both Cicero and Vitruvius, the theoretical and cultural aspects of Greek mathematics 
were seen as linked to practical use, but in contrast to the Greek perspective these 
aspects were not always viewed as independent of practical use (this applies to Vitruvius 
in particular). 
 
Probably most widely recognized aspect of mathematics from Roman civilization is the 
system of Roman numerals which is still used today for some everyday purposes (as 
opposed to mathematics problems asking for the products of intimidating expressions 

like  CCXXIV  and  CCCXXVI ).  No one has used them systematically to do arithmetic 
for many centuries (as noted on page 280 of Burton, for about half a millennium) but they 

are often used to suggest importance or timelessness (like MDCCLXXVI on the 
reverse of the Great Seal of the U. S.) or to provide an alternate numbering system in 
situations where such notation is useful for the sake of clarity (for example, numbering 
introductory pages in a book or listing things like topics, subsections or clauses in a legal 
statute).   The origins of the Roman numbering system are discussed in the online article 

http://en.wikipedia.org/wiki/Roman_numerals . 
 

The so – called Caesar cipher is another item relating mathematics and the Romans in 

popular culture; the idea is that one replaces letter number k  in the alphabet with letter 

number   k + C  for some constant C, cycling back to 1, 2, 3  etc. when k + C reaches  

27, 28, 29  etc. .  One example of a Caesar cipher is the  ROT13  code which is 
sometimes employed to prevent — or at least discourage — the reading of certain 

electronic messages or postings; in the  ROT13  table below the letters in the same 
columns are interchanged. 
 

  A B C D E F G H I J K L M   
                 

  N O P Q R S T U V W X Y Z   

 

In fact, such codes were known before Roman times (and deliberate encryption to 
preserve secrecy dates back at least to the Babylonians), and the writings of Aulus 

Gellius (c. 125 – after 180 A.D.) suggest that Julius Caesar (100 – 44 B.C.E.) may have 
also used more sophisticated encryption procedures. 
 
 
 


