
 

 

5. The late Greek period 
 
 

(Burton,  5.1 – 5.4) 
 
 
During the period between 400 B.C.E. and 150 B.C.E., Greek mathematical knowledge 
had increased very substantially.  Over the next few centuries, progress was more 
limited, and much of it involved mathematical topics like trigonometry that were needed 
in other subjects such as astronomy.   However, shortly before the end of the ancient 
Greek period during the 6th century A.D. there was some resurgence of activity that had 

important, far – reaching consequences for the future. 

  
Diophantus of Alexandria 

 
The known information about Diophantus (conjecturally 200 – 284, but possibly these 
years should be shifted by two decades or more) is contained in a classic algebraic word 
problem that is reproduced on page 218 of Burton.  His most important work is contained 
in his Arithmetica, of which we now have the first six out of thirteen books; manuscripts 
claiming to be later books from this work have been discovered but their authenticity has 
not been established.   
 
The Arithmetica of Diophantus differed greatly from earlier Greek writings in its 
treatment of purely algebraic problems in purely algebraic terms; as noted earlier, even 
the simplest algebraic equations had been analyzed in geometrical terms ever since the 
Pythagorean’s discovery of irrational numbers.   Two aspects of Arithmetica are 
particularly noteworthy:  One is his consideration of equations that have (usually 
infinitely) many solutions over the rational numbers or integers, and another is his 
introduction of special notation to manipulate mathematical relationships.  Prior to this, 
mathematical writers stated and studied algebraic problems using ordinary language.  In 
particular, an example of this sort from Egyptian mathematics is described beginning 
near the bottom of page 46 in Burton (see the discussion of Problem 24 in the final 
paragraph and its continuation well into the next page). 
 

We shall describe Diophantus’ notational innovations first.    Mathematical historians 
often use a three type classification scheme of G. H. J. Nesselmann (1811 – 1881) to 
describe mathematical  notational systems — rhetorical, syncopated, and symbolic.  
The first of these corresponds to the original practice of stating nearly everything in 
terms of standard words and phrases, and the last corresponds to the use of letters and 
symbols that we use today.  Syncopated notation is between these two, and although it 
does not use explicit symbols in the modern sense it adopts systematic abbreviations for 
basic concepts like unknowns and standard algebraic operations.  This is the sort of 
notation that Diophantus used throughout his work.  Several examples and more 
information appear on pages 219 – 220 of Burton.  Frequently mathematical histories 
characterize such notation as stenographic or shorthand, and either term is very 
descriptive. 
 

Diophantus considers a fairly wide range of problems in his work, including some that 
have definite solutions and others that are indeterminate.  Examples of the latter 
generally are systems of equations for which there are more unknowns than equations.  



 

 

In modern work we usually solve for some unknowns in terms of the others, but 
Diophantus was usually satisfied with finding just one solution of such equations.  
However, he did insist that his solutions be positive rational numbers.  His solutions and 
techniques are generally specialized and highly ingenious as opposed to systematic.  
One reason for this might be that despite his major notational innovations he still did not 
have the tools needed to formulate problems more generally.  For example, his notation 
only allowed for one unknown; reducing an equation in several unknowns to a single 
unknown required clever insights and was done using words rather than his shorthand 

notation.  He also lacked a symbol for a general number n.  
 

The problems in Book I have unique solutions and are fairly simple, but the problems in 

Book I I on squares and cubes quickly become more challenging, and some of the 
problems in later books foreshadowed important mathematical techniques which were 
development more than 1000 years later.   
 

To illustrate a few important and recurrent themes in Diophantus’ methods, we shall 

solve Problem 11 from Book I I. 
 

Given a rational number  d  >  0,  find  two positive rational numbers  x  and  y  such 

that  x 
2
  –  y 

2
  =  d. 

 

The crucial thing about this problem is that it involves two unknowns,  and it will be 

convenient  to write one in terms of the other; specifically, we shall let  x  =  y  +  b.  

Since we want   x 
2
  –  y 

2
  =  d  >  0,  the new unknown  b  will also be positive.   If we 

make this substitution the  original equation becomes  2 y b  +  b 
2
  =  d. 

 

In order to proceed further, we restrict attention to a case in which the relation between 
the two unknowns is rigid; this approach of introducing specific constraints is a common 

thread in many of Diophantus’  solutions.  For this specific problem we assume that  b  is 

constant.  One important issue is to determine the values of  b  for which this constraint 
is valid.  Since we are looking for solutions in which all numbers are positive, it follows 

that we need  b 
2
  <  d. 

 

For this choice of  b,   we do obtain a solution; namely,  y  =  (d  –  b 
2
)////b.  Using the 

equation,  we also obtain  x  =  (d  +  b 
2
)////b.   If we follow Diophantus’ choices and take  

d  =  60  and  b  =  3, then we get his solution with  y 
2
  =  289////4  and  x 

2
  =  529////4.   

 
Several other examples are discussed in Section 5.2 of Burton and the accompanying 
exercises.   More general treatments for many of the solutions in Burton are given in the 
first supplement to this unit.  In this discussion, we shall comment further on one 

particularly noteworthy problem treated in Burton (Problem 8 from Book I I, on pages 
220 – 221).  The general version of this problem is to express a rational square as a sum 
of two other rational squares.  With hindsight, one can see that every rational square 
can be written as such as sum in infinitely many different ways.  To show this, 

suppose that  x  is an arbitrary positive rational number, and suppose that we are given 

a primitive Pythagorean triple of positive integers  a,  b,  c  such that  a 
2
  +  b 

2
  =  c 

2
 (in 

other words, the integers do not have a nontrivial common factor).  Dividing such an 

equation by  c, we obtain an equation of the form  a 
2
  +  b 

2
  =  1  where  u  and  v  are 

positive rationals; furthermore, one can check that different primitive triples give rise to 



 

 

different  choices of  u  and  v.   For each of these choices of Pythagorean triples one 

has  x 
2
  =   (xu) 

2
  +  (xv) 

2
;  in particular, the solution in Burton comes from the familiar  

3, 4, 5  triple.  The existence, and complete determination, of all primitive Pythagorean 
triples is discussed on pages 107 – 109 and 293 – 298 of Burton.   —  One important 
thing about this problem is that it was apparently one inspiration for a famous statement 
which  P. de Fermat (1601 – 1665)  wrote in the margin of his copy of  Diophantus’  
Arithmetica.   Specifically, he noted that one could also prove that a positive rational 
cube is a sum of three positive rational cubes (for example, one can do this using the 

equation  1 
3
  +  6 

3
  +  8 

3
  =  9 

3
)  and every positive rational fourth power is a sum of 

four rational fourth powers  (since one has  30 
4
  +  120 

4
  +  272 

4
 +  315 

4
  =  353 

4
),  

after which he asserted that it was impossible to do express third or fourth powers as 

sums of two similar powers, and likewise it was impossible to express rational  n 

th
 

powers as sums of two positive  n 

th
  powers for higher values of  n.   This statement is 

equivalent to saying that the equations  a 
n
  +  b 

n
  =  c 

n
  have no solutions in which all 

three variables are positive when  n  >  2;  we shall discuss this statement  (Fermat’s 
Last Theorem)  later in the course.   For the time being, we shall merely give some 

references for results on sums of  n 

th
  powers and note that one recent result (cited in 

these references) shows that every fourth power of a rational number is in fact a sum of 

three positive rational fourth powers (since one has  95800
 4

  +  217519 
4
  +  414560

 4
 

=  422481 
4
). 

 

http://mathworld.wolfram.com/DiophantineEquation4thPowers.html 
 

http://www.uwgb.edu/dutchs/RECMATH/rmpowers.htm 
 

http://en.wikipedia.org/wiki/Euler%27s_sum_of_powers_conjecture 

 
Diophantus also seems to have recognized some general number – theoretic patterns, 
although it is not clear whether he could prove them.  Here are some particularly 
noteworthy examples: 
 

1. A number of the form 4n + 3 cannot be written as a sum of two squares (of 
integers). 

 

2. A number of the form 24n + 7 cannot be written as a sum of three squares. 
 

3. Every   positive integer can be written as a sum of at most four squares. 
 

The first of these can be verified fairly directly (an even perfect square is divisible by 4, 

and an odd perfect square has the form 4k
2
 + 4k + 1), while the second is more 

challenging but can still be done in the same way, and it seems quite possible that 
Diophantus may have had proofs of these results.  However, it is far less likely that he 
had a proof for the last statement.  Fermat stated the result but could not prove it, and 

the first known proof was due to J. – L. Lagrange (1736 – 1813) in the late 18th century 
using results of Euler.  Here are two online references: 

 

http://planetmath.org/encyclopedia/LagrangesFourSquareTheorem.html 
 

http://planetmath.org/encyclopedia/ProofOfLagrangesFourSquareTheorem.html 
 

For the sake of completeness, here is a reference for the proof and a background 
discussion of the second result on sums of three squares: 



 

 

 

http://mathforum.org/library/drmath/view/55850.html 
 

Even though modern mathematics usually has no problem in viewing irrational numbers 
as solutions to equations, there are both practical and theoretical situations in which one 
must or should have solutions of a more specialized type.  For example, it is often 
necessary or useful to know whether a system of equations has a solution for which the 
values of some or all the unknown quantities are integers (see the first few pages of 
http://web.mit.edu/15.053/www/AMP-Chapter-09.pdf  for a few “real – life” examples).   

When one uses terms like  Diophantine equations| or  Diophantine problems  today, 

it is generally understood that one is looking for solutions where the values of all the 
unknowns are integers (rather than rational numbers). 
 

Of course, specific Diophantine problems had been studied long before the work of 
Diophantus; for example, the study of integral solutions to the classical Pythagorean 

equation x 

2
  +  y 

2
   =   z 

2
 predated Greek mathematics by well over a thousand years.  

Another example, the so – called Cattle Problem attributed to Archimedes, is 

discussed on pages  223 – 224 of Burton.  It might be worthwhile to compare the 
description of the latter problem in Burton with the following translation of the Greek 
original: 

 

http://www.mcs.drexel.edu/~crorres/Archimedes/Cattle/Statement.html 
 

As noted in Burton, the solution of the cattle problem reduces to solving the Diophantine 

equation x 
2
 – 4,729,494  y 

2  
 = 1 where y is divisible by 9314.  Not surprisingly, the 

integral solutions involve very large numbers, and a complete solution was not obtained 
until the nineteen sixties with the help of computers; the solution obtained and confirmed 
at the time has over  200,000 digits.   The following online references also contain further 
information: 

 

http://www.maa.org/devlin/devlin_02_04.html 
 

http://mathworld.wolfram.com/ArchimedesCattleProblem.html 
 

Mathematicians from India and China were also interested in examples of Diophantine 
equations around the time of Diophantus (say within two centuries or so of his work), 

and some aspects of their work are summarized on pages 228 – 230 of Burton. 
 

The study of Diophantine equations continues to be a central topic in number theory, 
and some of the problems in Arithmetica foreshadowed important developments 
which took place during the 18th and 19th centuries.  One problem of this type is 
discussed in http://math.ucr.edu/~res/math153/history05c.pdf , and still further comments 
appear in the following book: 
 

I. G. Bashmakova,  Diophantus and Diophantine Equations 
(Transl. by A. Shenitzer, with an Addendum by J. H. Silverman),  
MAA Dolciani Expositions No. 20.  Mathematical Association of 
America, Washington DC, 1997. 

 

In general, it is difficult to determine whether a given Diophantine equation is solvable.  

For example, the Diophantine equation x
2
  –  94 y

2
  =  1 is solvable over the integers, 

although the smallest solution is x  =  2,143,295 and y  =  221,064 , but on the other 

hand the highly similar equation x
2
 –  94 y

2
  =  – 1 has no integral solutions.   Results 

from the middle of the 20th century imply that there is no systematic procedure for 



 

 

deciding whether a given Diophantine equation is solvable (this question is also known 
as Hilbert’s Tenth Problem).  Here is an online reference: 

 

http://www.ltn.lv/~podnieks/gt4.html 

 
Diophantus refers to other writings of his that are now lost, and in particular he mentions 

the following result:   Given two rational numbers  a and b, then it is possible to find 

another pair of rational numbers c and d such that a 

3
 – b 

3
   =   c 

3
 + d 

3
.   A proof 

of this result is described in another supplement to this unit. 

  
Pappus of Alexandria 

 
Much of the late activity in Greek mathematics was devoted to summaries and 
commentaries on earlier work.  This work is particularly important for mathematicians 
today because several of these commentaries survived to a great extent even though 

the original works are now lost.  Pappus of Alexandria (c. 290 – 350) was a particularly 
important contributor in this regard, for his writings indicate he had an extremely solid 
understanding of the earlier work which was complemented by his own perspective on 
the earlier writings.   He also obtained new results in geometry which were the first major 
advances in centuries for that subject, and he is generally regarded as the last great 
mathematician from the Hellenistic period.   
  

Pappus’ main (and best preserved) work was  The Collection  or  The Synagogue,  an 
extremely comprehensive treatise on geometry which included everything of interest to 
him.  In several cases, he is our only source of knowledge about some mathematicians’ 
work.  Of the original eight books, only the first and part of the second are missing (and 
fortunately these are less crucial than the rest for modern scholarship).  At many points 
in this work he added explanations, alternative approaches, and new results of his own.  
We have already mentioned his short and elegant proof of the Isosceles Triangle 
Theorem (see pages 150 – 151 of Burton), and we have also mentioned his introduction 
of the directrix line into the theory of conics.   
 

An extremely brief account of some results in Pappus’  Synagogue  appears on pages 

232 – 233 of Burton, but a more extensive summary can be found at the following online 
site: 

 

http://www.math.tamu.edu/%7Edallen/masters/Greek/pappus.pdf 
 

Today Pappus may be best known for his results on the areas of surfaces of revolution 
and volumes of solids of revolution, which frequently appear in the text and exercises for 
standard calculus books.  The result states that the area of a surface of revolution is the 
product of the length of the curve generating the surface times the distance traveled by 
the center of mass when rotated about the axis, and the volume of a solid of revolution is 
the product of the volume of the generating region times the distance traveled by its 
center of mass when rotated about the axis.  This result was also published by P. Guldin 

(1577 – 1643) in the 17th century, and it is frequently known as the Pappus – Guldin 
Theorem.  A discussion and partial derivation of the result appears in an addendum to 
these notes.    

 



 

 

Some later commentators 

 
This discussion will be limited to a few names.  Theon of Alexandria (335 – 395) is 
particularly known for his edited version of Euclid’s Elements that became standard.  

His daughter Hypatia (370 – 418) is the first prominent woman to appear in the history of 
mathematics.  She is credited with writing and editing commentaries on several classic 
works, but all of her own writings on areas, volumes and optimization are apparently 
lost; much of our knowledge about her comes from correspondence with her student, 

Synesius of Cyrene in Libya (c. 373 – c. 414), who became the Bishop of Ptolemais, 
which was located in the eastern coastal area of Libya.  In many key respects, Hypatia 
marks the end of scholarly activity in Alexandria; near the end of the 4th century, 
Christianity became the state religion of the Roman Empire, and ultimately she was a 
victim of the resulting cultural and religious infighting which took place.   Many scholars 
of the time strongly resisted the spread of Christianity, while Christianity itself often 
dismissed Greek learning as an adjunct of the old religions it was supplanting, so conflict 

was inevitable.   Further discussion appears on pages 233 – 234 of Burton. 
 

The following frequently cited quotation from the period may seem to reflect this conflict, 
but as noted in  http://www.math.ohio-state.edu/~easwaran/augustine.html some recent 
translations suggest that the criticism was really aimed at astrologers rather than 
mathematicians: 
 

The good Christian should beware of mathematicians, and all those who make 
empty prophecies. The danger already exists that the mathematicians have 
made a covenant with the devil to darken the spirit and to confine man in the 
bonds of Hell.  

 

St. Augustine of Hippo Regius (354 – 430)  —  De Genesi ad Litteram, Book I I, 

xviii, 37.   [ Note: Hippo Regius = modern – day Annaba, Algeria, on the 
Mediterranean coast near the border with Tunisia.] 

 

Although many early Christian writers were frequently negative about Greek scholarship, 

the following quotation from Origen of Alexandria (c. 185 – 254) reflects at least some 
sentiment in the opposite direction (for more about Origen and related matters see 
http://www.newadvent.org/cathen/11306b.htm or  http://www.iep.utm.edu/origen-of-

alexandria/). 
 

I would wish you to draw from Greek philosophy such things as are fit to serve as 
preparatory studies for Christianity, and from geometry and astronomy such 
things as may be useful for the interpretation of Holy Scripture.  

 

Moving on to even later contributors, we have already mentioned Proclus Diadochus 

(410/412 – 485) as a valuable source about Greek mathematics during the period 
between Thales and Euclid.  One further commentator who should be mentioned is 

Eutocius of Ascalon (480 – 540), whose recognition of Archimedes’ work played an 
important role in preserving knowledge of the latter’s contributions.   

 
The end of Greek mathematics 

 
A combination of events is regarded as marking the end of ancient Greek mathematics; 
before these events, mathematical activities had slowed down or stopped altogether, 
and the main significance of the milestones is their irreversibility.  We have already 



 

 

noted the adoption of Christianity as an official religion at the end of the 4th century A.D., 
and this accelerated the decline substantially.  The Neoplatonic academy in Athens was 

finally closed in 529 by the Byzantine Emperor Justinian I (482/483 – 565, reigned 527 – 
565; an online reference is http://en.wikipedia.org/wiki/Justinian_I ), who for many 
reasons was one of the most important and effective figures in the long history of that 
empire.  Later Islamic conquests during the middle of the 7th century irreversibly 
changed the basic culture and politics in many places such as Egypt and Syria which 
had been part of the Byzantine Empire.  However, despite such developments, efforts to 
preserve the ancient Greek intellectual heritage continued throughout the existence of 
the Byzantine Empire until it ended in 1453, although this activity was extremely limited 
and almost entirely devoted to preservation rather than innovation.  A summary of this 

activity is given in Chapter X X I of the following standard reference: 
 

T. L. Heath.  A History of Greek Mathematics, Vol. 2 (Reprint of 
the 1921 Edition).  Adamant Media Corporation, Boston, 2000. 

 

By the last days of the Byzantine Empire, intellectual activity in Western Europe had 
become revitalized, and the West had already been reacquainting itself with the 
accomplishments of ancient Greek mathematicians for some time. 

  
The Arab conquest of Alexandria 

 
There is a widely circulated story about the destruction of the library in Alexandria after 

its conquest by the Caliph Omar (‘Umar ibn al – Khattāb, 581– 644, reigned 634 – 644) 

in 641, and it is summarized on page 234 of Burton.   The discussion of this story in 
Burton is far more balanced than the comparable discussions in several other histories 
and mathematics texts, and in particular Burton mentions other periods during which the 
library appears to have been damaged seriously by others;  in addition to the example 
Burton cites specifically, there may have been serious destruction during the time of 
Patriarch Theophilus,  who served from 385 to 412, but even if this did happen the 
account in The Decline and Fall of the Roman Empire by E. Gibbon (1737 – 1794)  is 
probably exaggerated.   In any case, by the middle of the 7th century the library had 
suffered substantial deterioration and long term neglect (as noted above, during the 
preceding two centuries there was little if any activity).  More important, Burton’s choice 
of words also suggests that details in the story may not be accurate.   
 

In fact, there are at most two independent sources for this story, and the best known was 
written by Bishop Gregory Bar Hebræus (1226 – 1286) who lived six centuries later.  
Other historical sources for the area during the 7th century say nothing about the matter, 
even in cases where one might expect to see some comments about such a major 
event,  and even if significant parts of the story are very doubtful and probably highly 
exaggerated (for example, fires from the burning manuscripts supposedly heating 4000 
municipal baths for six months).  The following links provide more detailed information: 

 

http://www.bede.org.uk/library.htm 
 

http://www.bede.org.uk/Library2.htm 
 

http://www.ehistory.com/world/articles/ArticleView.cfm?AID=9 
 

http://www.answers.com/topic/library-of-alexandria 
 

http://www.newadvent.org/cathen/01303a.htm 
 



 

 

A few comments seem necessary here.  Although the historical records do not provide 
much evidence for the story about the library and no corroboration for the story that is 
frequently recounted, they cannot be used to disprove it either.  Consequently, Burton’s 
conjecture of some historical basis for the story may well be correct.   There are many 
well – documented instances of religious leaders ordering the destruction of valuable 
cultural artifacts; for example, one can point to the nearly complete destruction of Mayan 

writings by Bishop Diego de Landa (1524 – 1579) in the 16th century and the more 
recent destruction of massive Buddhist sculptures in central Afghanistan by the Taliban 

government in early 2001.  Several issues deserve to be considered in connection with 
the story about the library in Alexandria. 

 

1. As noted above, evidence in all directions is extremely limited and 
the central story is of questionable credibility.   

 

2. For a century or two there had been little if any interest on anyone’s 
part in whatever library contents may have remained after repeated 
destructions and prolonged disuse. 

 

3. Arabic culture later played an extremely important role in the history 
of mathematics, and in fact many important mathematical writings of 
the Greeks are available to us today only because they were later 
translated into Arabic. 

 

4. At this point in history, the most unfortunate fact about the loss of 
ancient manuscripts is that they are no longer available to us, no 
matter how this happened. 

 

5. Destructive or negligent actions by a wide range of individuals and 
cultures, over a period of several centuries, contributed significantly 
to this loss of ancient writings. 

 

6. A great deal of ancient mathematical material survived in some form, 
and mathematics moved forward despite whatever might have 
happened. 

 

The final point will lead directly to the next unit. 

 
Addenda to this unit 

 
There are five separate items.  The first (5A) analyzes the solutions to some problems in 
Diophantus’  Arithmetica  from a more general perspective, the second (5B) proves the 
previously cited result of Diophantus which states that a difference of two cubes of 
rational numbers can also be represented as the sum of two cubes of (other) rational 
numbers, the third (5C) considers a third degree equation in two unknowns in 
Diophantus’  Arithmetica  which is solved using ideas from geometry, the fourth (5D) 
has a graph of the curve in the coordinate plane defined by the third degree equation in 
(5C),  and the last (5E) derives the Pappus (or Pappus – Guldin) Centroid Theorems for 
surfaces and solids of revolution using methods from integral calculus. 
 


