6.C. Chinese Remainder Theorem problems

Here are some more examples, first solved by using the integers modulo $k\left(=\mathbb{Z}_{k}\right)$ for suitable choices of k, and then more directly.
Problem 1. Find all integers n such that $n=5 p+2$ and $n=7 q+5$ where p and q are integers.
\mathbb{Z}_{k} SOLUTION. We need to find p such that $5 p+2 \equiv 5$ modulo 7 , which is equivalent to $5 p \equiv$ $3 \bmod 7$. To proceed, we need to find y such that $5 y \equiv 1 \bmod 7$; we can do this easily because $5 \cdot 3=14+1$. Therefore we have $p \equiv 15 p=3 \cdot 5 p \equiv 3 \cdot 3 \equiv 2 \bmod 7$ so that $p=7 z+2$ for some z and $n=5(7 z+2)+2=35 z+10+2=35 z+12 . ■$
DIRECT SOLUTION. We need to find y so that $5 y=1+7 w$ for some w. As before we can take $y=3$ and $w=2$. Then we have

$$
3 n=15 p+6=21 q+15, \text { so that } p+6=1+7 \cdot(2+3 q-2 p)
$$

so that $p+5$ is divisible by 7 or equivalently p has the form $7 r+2$ for some r. Thus as in the preceding discussion we have $n=5(7 z+2)+2=35 z+10+2=35 z+12$.

Problem 2. Find all integers n such that $0<n<200$ and n can be written as $n=11 p+6$ and $n=17 q+8$ where p and q are integers.
\mathbb{Z}_{k} SOLUTION. We need to find p such that $11 p+6 \equiv 8$ modulo 17 , which is equivalent to $11 p \equiv 2 \bmod 17$. To proceed, we need to find y such that $11 y \equiv 1 \bmod 17$; we can do this easily because $11 \cdot-3=-34+1=(-2) \cdot 17+1$. Multiplying the congruence on the first line by -3 , we find that

$$
p \equiv-33 p \equiv(-3) \cdot 11 p \equiv(-3) \cdot 2 \equiv-6
$$

$\bmod 17$, so that $p=17 w+11$ for some w. Substituting in this value, we obtain

$$
n=11(17 w+11)+6=187 w+121+6=187 w+127
$$

By construction $n \equiv 6 \bmod 11$ and the other congruence follows because $127=(9 \cdot 17)+8$. Since $187 w+127$ is not between 0 and 200 if $w \neq 0$, it follows that $n=127$ is the only solution.■
DIRECT SOLUTION. We need to find y so that $11 y=1+17 w$ for some w. As before we can take $y=-3$ and $w=-2$. Then we have

$$
-3 n=-33 p-18=-51 q-24, \text { so that } p=-6+17 \cdot(2 p-3 q)
$$

so that $p+6$ is divisible by 17 or equivalently p has the form $17 r+11$ for some r. Thus as in the preceding discussion we have

$$
n=11(17 r+11)+6=187 r+121+6=187 r+127
$$

and as before the only solution between 0 and 200 is 127 .

The general procedure

For the sake of completeness, we shall describe the general procedure using the finite number systems \mathbb{Z}_{k}.

The objective is to solve the simultaneous congruences

$$
x \equiv c \bmod a, \quad x \equiv d \bmod b
$$

where a and b are relatively prime (positive) integers and c, d are arbitrary integers. The first congruence means that x has the form $a y+c$, so the problem is to find y such that $a y+c \equiv d \bmod b$. Subtracting c from both sides, we see that the latter congruence is equivalent to $a y \equiv d-c \bmod b$.

Since a and b are relatively prime, there exist integers u, w such that $u a+b w=1$; we can find them using the Euclidean Algorithm as in chineseremainder.pdf. In particular, these imply that $u a \equiv 1 \bmod b$, so that we must have

$$
y \equiv u a y \equiv u(d-c) \bmod b .
$$

In other words, y must have the form $u(d-c)+b z$ for some integer z, and consequently we must also have

$$
x=a u(d-c)+z a b+c
$$

for some z. In particular, this tells us that if solutions exist then they must all be congruent to $a u(d-c)+c \bmod a b$.

Finally, we need to verify something which may seem obvious; namely, $x=a u(d-c)+c$ actually solves the original pair of congruences. Now $x \equiv c$ mod a follows directly from the construction, and using $1=u a+w b$ we see that

$$
x=(1-w b)(d-c)+c=(-w b)(d-c)+(d-c)+c=d-b w(d-c)
$$

which yields $x \equiv d \bmod b$.

