6.C. Chinese Remainder Theorem problems

Here are some more examples, first solved by using the integers modulo $k (= \mathbb{Z}_k)$ for suitable choices of k, and then more directly.

Problem 1. Find all integers n such that n = 5p + 2 and n = 7q + 5 where p and q are integers.

 \mathbb{Z}_k SOLUTION. We need to find p such that $5p + 2 \equiv 5 \mod 0$, which is equivalent to $5p \equiv 3 \mod 7$. To proceed, we need to find y such that $5y \equiv 1 \mod 7$; we can do this easily because $5 \cdot 3 = 14 + 1$. Therefore we have $p \equiv 15p = 3 \cdot 5p \equiv 3 \cdot 3 \equiv 2 \mod 7$ so that p = 7z + 2 for some z and n = 5(7z + 2) + 2 = 35z + 10 + 2 = 35z + 12.

DIRECT SOLUTION. We need to find y so that 5y = 1 + 7w for some w. As before we can take y = 3 and w = 2. Then we have

$$3n = 15p + 6 = 21q + 15$$
, so that $p + 6 = 1 + 7 \cdot (2 + 3q - 2p)$

so that p + 5 is divisible by 7 or equivalently p has the form 7r + 2 for some r. Thus as in the preceding discussion we have n = 5(7z + 2) + 2 = 35z + 10 + 2 = 35z + 12.

Problem 2. Find all integers n such that 0 < n < 200 and n can be written as n = 11p + 6 and n = 17q + 8 where p and q are integers.

 \mathbb{Z}_k SOLUTION. We need to find p such that $11p + 6 \equiv 8 \mod 17$, which is equivalent to $11p \equiv 2 \mod 17$. To proceed, we need to find y such that $11y \equiv 1 \mod 17$; we can do this easily because $11 \cdot -3 = -34 + 1 = (-2) \cdot 17 + 1$. Multiplying the congruence on the first line by -3, we find that

$$p \equiv -33p \equiv (-3) \cdot 11p \equiv (-3) \cdot 2 \equiv -6$$

mod 17, so that p = 17w + 11 for some w. Substituting in this value, we obtain

$$n = 11(17w + 11) + 6 = 187w + 121 + 6 = 187w + 127$$

By construction $n \equiv 6 \mod 11$ and the other congruence follows because $127 = (9 \cdot 17) + 8$. Since 187w + 127 is not between 0 and 200 if $w \neq 0$, it follows that n = 127 is the only solution.

DIRECT SOLUTION. We need to find y so that 11y = 1 + 17w for some w. As before we can take y = -3 and w = -2. Then we have

$$-3n = -33p - 18 = -51q - 24$$
, so that $p = -6 + 17 \cdot (2p - 3q)$

so that p + 6 is divisible by 17 or equivalently p has the form 17r + 11 for some r. Thus as in the preceding discussion we have

$$n = 11(17r + 11) + 6 = 187r + 121 + 6 = 187r + 127$$

and as before the only solution between 0 and 200 is 127.

The general procedure

For the sake of completeness, we shall describe the general procedure using the finite number systems \mathbb{Z}_k .

The objective is to solve the simultaneous congruences

$$x \equiv c \mod a$$
, $x \equiv d \mod b$

where a and b are relatively prime (positive) integers and c, d are arbitrary integers. The first congruence means that x has the form ay+c, so the problem is to find y such that $ay+c \equiv d \mod b$. Subtracting c from both sides, we see that the latter congruence is equivalent to $ay \equiv d-c \mod b$.

Since a and b are relatively prime, there exist integers u, w such that ua + bw = 1; we can find them using the Euclidean Algorithm as in chineseremainder.pdf. In particular, these imply that $ua \equiv 1 \mod b$, so that we must have

$$y \equiv uay \equiv u(d-c) \mod b$$
.

In other words, y must have the form u(d-c) + bz for some integer z, and consequently we must also have

$$x = au(d-c) + zab + c$$

for some z. In particular, this tells us that if solutions exist then they must all be congruent to $au(d-c) + c \mod ab$.

Finally, we need to verify something which may seem obvious; namely, x = au(d-c) + c actually solves the original pair of congruences. Now $x \equiv c \mod a$ follows directly from the construction, and using 1 = ua + wb we see that

x = (1 - wb)(d - c) + c = (-wb)(d - c) + (d - c) + c = d - bw(d - c)

which yields $x \equiv d \mod b$.