
 

 

7. Mathematical revival in Western Europe 
 
 

(Burton, 6.2 – 6.4,  7.1) 
 
 
Although mathematical studies and discoveries during the Dark Ages in Europe were 
extremely limited, there were contributors to the subject during the period from the Latin 

commentator Boëthius (475 – 524) to the end of the 12th century.   Several names are 
mentioned in Sections 5.4 and 6.1 of Burton, and the latter’s exercises also mention 

Alcuin of York (735 – 804) and Gerbert d’Aurillac (940 – 1003), who became Pope 

Sylvester I I (997 – 1003). 
 

During the second half of the 11th century some important political developments helped 
raise European’s consciousness of ancient Greek mathematical work and the more 
recent advances by Indian and Arabic mathematicians.   Many of these involved 
Christian conquests of territory that had been in Muslim hands for long periods of time.  
Specific examples of particular importance for mathematics were the Norman conquest 
of Sicily in 1072, the Spanish reconquista during which extensive and important 
territories in the Iberian Peninsula changed from Muslim to Christian hands, and the start 
of the Crusades in 1095.  From a mathematical perspective, one important consequence 
was dramatically increased access to the work of Arabic mathematicians and their 
translations of ancient Greek manuscripts.   Efforts to translate these manuscripts into 
Latin continued throughout the 12th century; the quality of these translations was uneven 
for several reasons (for example, in some cases the Arabic manuscripts were 
themselves imperfect translations from Greek, and in other cases the translations were 
based upon manuscripts in very poor condition), but this was an important step to 

promoting mathematical activity in Europe.  A more detailed account of this so – called 

Century of Translation appears on pages 272 – 277 of Burton.   

 
Fibonacci 

 
Leonardo of Pisa (Leonardo Pisano Bigollo), more frequently known by the 18th century 

nickname Fibonacci  (1170 – 1250), symbolizes the revival of mathematical activity in 

Europe during the late Middle Ages, and his book Liber abaci (Book of Counting — 

literally, the abacus), which appeared in 1202, is the first major work aimed specifically 
at a European audience that recounts some important ideas from Hindu and Arabic 
mathematics and integrates this work with that of earlier contributions from Greek 
mathematics.   The work is not merely a routine compilation of material from other 
sources,  but rather it represents an independent and broadly based point of view.   
 

Despite the impact of Liber abaci during the late Middle Ages, the first printed version 

did not appear until 1857, nearly 650 years after it was first written; incidentally, the first 

published English translation appeared in 2003. 

 
Comments on the contents of Fibonacci’s writings 

 
Certainly the most far reaching aspect of Liber abaci is its presentation of the Hindu – 



 

 

Arabic number system and the large amount of evidence it produces to demonstrate the 

superiority of the Hindu – Arabic notation and Indian methods of computation.  However, 
there are several other noteworthy features.  Some ideas in the book were very 
advanced for that time, but many aspects of the notation are clumsy by modern 
standards. 
 

As Burton notes, it is somewhat ironic that today Fibonacci is best known for one 

problem from his book that was named after him in 1877 by E. Lucas (1842 – 1891); 
indeed, this sequence appears in writings of the Indian mathematicians Hemachandra 

(1089 – 1173) and Gospala around 1135, and it also appears in even earlier 7th century 
Indian writings (and perhaps even much earlier in the writings of Pingala). 
 

There is an extensive discussion of the Fibonacci sequence in Burton in Section 6.3 
(pages 287 – 293).  Perhaps the most notable omission is an explicit formula for the 

values of Fn as a function of n.  The formula is given by   
 

 
 

 

and a derivation is given in  http://math.ucr.edu/~res/math153/history07a.pdf.  For the 
sake of completeness, we shall also give references for a few other formulas which are 
stated and used in the exercises on pages 292 – 293 of Burton.  In Exercises 5 and 6, 

one needs the fact that  Fd  divides  Fn if and only if  d  divides  n.   This is relatively 
simple to prove and can be found on pages 51 – 59 of the following book: 
 

N. N. Vorobiev. Fibonacci Numbers (Transl. from the 1992 Russian original by M. 
Martin).  Birkhäuser Basel, Boston MA, 2002. 

 

On the other hand, the divisibility statement for Fibonacci numbers in Exercise 3 is a 
deeper fact; here is an online reference:  
 

http://math.arizona.edu/~ura-reports/071/Campbell.Charles/Final.pdf 
 

Exercise 1 cites a weak form of remarkable result called  Zeckendorf’s Theorem; a 
description and some references are given in the following online references: 
 

http://en.wikipedia.org/wiki/Zeckendorf%27s_theorem 
 

http://mathworld.wolfram.com/ZeckendorfRepresentation.html 
 

The Fibonacci sequence has been studied extensively, with some properties fairly easy 
to verify while others are quite difficult and involve highly sophisticated methods.  There 

is an extensive summary in  http://mathworld.wolfram.com/FibonacciNumber.html.  
 

In Liber quadratorum Fibonacci investigates several number – theoretic questions 

involving perfect squares.  Much of this is described on pages 280 – 281 of Burton.  
As noted there, one basic topic of interest in this book is the following:  

 

Given an arithmetic progression of integers    a + n d    (where a and d are 

fixed integers and n is the variable), can one find three or more successive 
values that are perfect squares? 

 

Burton gives one example of such a triple — namely, {1, 25, 49} — for which the 

difference d is equal to 24, and some of the exercises discuss additional aspects of 
this question.  Remarks in Burton suggest that other triples of this type exist, but nothing 



 

 

further is stated, so we shall fill in some details here.    In fact, there are 67 sequences of 

three elements whose constant difference is  10,000  or less.  The next few are given as 
follows:  
 

{2 ², 10 ², 14 ²},  with constant difference =  96 

{7 ², 13 ², 17 ²},  with constant difference = 120 

{3 ², 15 ², 21 ²},  with constant difference = 216 

{7 ², 17 ², 23 ²},  with constant difference = 240 
 

Fibonacci actually studied this question of squares in an arithmetic progression quite 

extensively, and in particular he completely characterized the common differences d 
that can arise from consecutive triples of perfect squares.  He called these differences 
congruous numbers, and they are described (but not defined explicitly) in the second 
part of Exercise 5 on page 285 of Burton.   In this terminology, the objective of Exercise 

5(b) is to show that every congruous number is divisible by 24.  We shall give a proof of 
Fibonacci’s result relating congruous numbers to consecutive squares in arithmetic 
progressions in a supplement to this unit; an interesting geometric approach to the 
consecutive squares question is implicit in the following article: 
 

http://www.math.uconn.edu/~kconrad/ross2007/3squarearithprog.pdf 
 

In either case, the consecutive squares question requires more effort than many of the 
number – theoretic problems discussed previously, so at this point we shall limit 

ourselves to proving that the common difference d is always divisible by 24; it is taken 
from the following online site:  
 

http://nrich.maths.org/askedNRICH/edited/3412.html 
 

[ Note:  This argument uses numerous concepts from courses like 

Mathematics 136, and it can be skipped without loss of continuity. ]  
 

Suppose that a ², b ², and c ² are in an arithmetic progression whose constant 

difference d is not a multiple of 8.  Then there is a minimal such triple such that the 

least number a in the progression cannot be chosen any smaller, and the middle 

number b is minimal for all triples a,  x,  y whose squares form an arithmetic 

progression (given a and b, the third number c is uniquely determined by the 
conditions of the problem). 
 

The first step in the proof is to show that for such a minimal triple {a, b, c}  the 

greatest common divisors satisfy G.C.D. (a, b)  =  G.C.D. (b, c)  = 1.  Suppose first 

that there is some prime p which divides both a and b, so that a = p x and b = p y 

for some integers x and y.  Then p ² divides the difference b ² – a ², so that it also divides 

the difference c ² – b ², which in turn implies that p ² divides c² and hence p divides c.  If 

we write c = p z, then it follows that {x, y, z}  is a triple whose squares form an 

arithmetic progression with common difference w = d /p ².  Since d is not divisible by 

8, neither is w.  Thus we have constructed a new triple {x, y, z}  whose squares form 

an arithmetic progression such that the common difference is not divisible by 8.  But we 

assumed that {a, b, c} is a minimal triple of this type and x < a, so this is a 

contradiction; the source of this contradiction was our assumption that a and b had a 



 

 

common prime factor, and therefore this must be false.  —  Similar considerations imply 

that b and c cannot have a common prime factor. 
 

Still assuming we have a minimal triple, we claim that a and c cannot both be even; if 

this were true, then b ² =  (a ² + c ²)/ 2 would be even so a and b would share a factor 

of 2.  This means that at most one of a, b, c is even. 
 

Now if x is an odd integer then it is easily checked that x ²  =  1  (mod 8)  [ by one of 

the exercises from an earlier unit, if x is odd we know that x ² leaves a remainder of 

1 when divided by 8 ] and if x is even then either x ²  =  0  (mod 8)  or x ²  =  4  

(mod 8).   [ The notation means that both sides of the equation have the same 

remainder when divided by 8. ]  Therefore working mod 8 the triple {a ², b ², c ²} must be 
one of the following: 

 

 (0, 1, 1) 

(4, 1, 1) 

(1, 0, 1) 

(1, 4, 1) 

(1, 1, 0) 

(1, 1, 4) 
 

It is clear that none of these triples are in arithmetic progression, so we have obtained a 

contradiction, establishing that the common difference must be a multiple of 8.   
  

Now if the arithmetic progression has common difference d  = 1 (mod 3) then a ², 

b², c ² must each have distinct [remainders or] residues (mod 3); in particular one of 

them must be equal to – 1 (mod 3), which is impossible because either x  ²  =  0 (mod 

3)  or x ²  =  1 (mod 3).   Likewise, if the common difference satisfies  d = – 1 (mod 

3),     then the numbers a ², b ², c ² must again have distinct residues (mod 3), which 

leads to the same contradiction.  Therefore we must have d = 0 (mod 3),  so that the 

common difference is a multiple of 8 and 3, which means it must be a multiple of 24.����  
 

Further results.  One can also ask whether there are even longer sequences of 

squares in arithmetic progressions, and a result of P. de Fermat (1601 – 1665) and L. 
Euler states that no such sequences exist.   A proof is given in the following reference: 

 

http://www.mathpages.com/home/kmath044/kmath044.htm 
 

Here is a simple consequence of the nonexistence result from the same source: 
 

THEOREM.   There are no rational numbers p, q such that  ( p ², q ²) is a point on the 

hyperbola given by  
 

(2 – x) (2 – y)    =    1 
 

with  ( p ², q ²) not equal to (1, 1).   
 

Proof.  Suppose we have rational numbers p = a/ b and q = c/ d (with both fractions 

reduced to least terms). Then if ( p ², q ²) is on the hyperbola we have 
 



 

 

(2 b ² – a²) (2 d ² – c²)     =    b ² d ² 
 

Since our fractions are reduced to least terms, it follows that b ² must be relatively prime 

to 2 b ² – a²  [no common divisors except 1] and likewise c² must be relatively prime 

to 2 d ²  –  c², so that  
 

b ²     =     2 d ²  –  c²       and       d ²     =     2 b ²  –  a². 
 

Rearranging terms we see that 
 

b ²  –  d²     =     d ²  –  c²       and       d²  –  b²     =     b ²  –  a². 
 

Together these equations imply that a
 ², b 

 ², d ² and c
 ² are in arithmetic progression, 

which we know is impossible.����  
 

Another noteworthy achievement of Fibonacci was his solution of the cubic equation 
 

x 

3
  +  2 x 

2
  +  10 x    =    20 

 

which was reportedly given to him as a challenge.  His numerical approximation to the 
root is described on page 283 of Burton; aside from the accuracy of the result, it is worth 

noting how, despite his writings on the Hindu – Arabic numeration system, he (and 
others, including Arabic mathematicians) still wrote fractional values in the Babylonian 
sexagesimal notation).   In his analysis of this equation he also made an important 
observation which foreshadowed the nineteenth century results on the impossibility of 
trisecting angles and duplicating cubes by means of straightedge and compass.  It 
appears that the original version of the problem was to find a roof of the given cubic 
equation by means of classical Greek straightedge and compass methods.  Fibonacci 
proved that the root could not be obtained by such methods. 
 

Rather than attempt to give Fibonacci’s proof, we shall analyze the equation from the 
same viewpoint we employed to study the construction problems.  As in those cases, the 
proof that a root cannot be found using straightedge and compass depends upon 

showing that the polynomial x 

3
 + 2 x 

2
 + 10 x   –   20 cannot be factored into a 

product of two rational polynomials of lower degree, or equivalently (by results of Gauss; 
see  http://en.wikipedia.org/wiki/Gauss%27s_lemma_(polynomial)  for details) it does not 
have an integral factorization of this sort.  If it had such a factorization then it would have 
a linear factor and hence an integral root.  Furthermore, if it had an integral root then this 

root would have to divide 20 and thus would have to be one of the following: 
 

± 1,   ± 2,   ± 4,   ± 5,   ± 10,   ± 20 
 

One is then left to check that none of these twelve integers is a root of the given 
polynomial.   Direct substitution is perhaps the most immediate way of attacking this 
problem, but one can also dispose of many possibilities simultaneously by noting that 

the polynomial under consideration is positive for all integers x   >   1  and it is negative 

for all integers  x   <   0. 
 

Fibonacci’s writings on Pythagorean triples are discussed in Section 6.4 of Burton 

(pages 293 – 299). 

 



 

 

Jordanus Nemorarius 

  
One noteworthy contemporary of Fibonacci was Jordanus Nemorarius (Jordanus de 

Nemore, 1225 – 1260), who made contributions in several areas.  He successfully 
analyzed mechanical problems about inclined planes that Archimedes had not been able 
to solve, and he was the first western mathematician to use letters consistently as 
symbols for unknown quantities.  However, aside from this innovation his mathematical 

terminology was rhetorical (see pages 283 – 284 of Burton). 
 

One result of Jordanus proved a basic relationship between perfect and nonperfect 
numbers.  Let us define a positive number to be abundant if it is less than the sum of its 
proper divisors and deficient if it is greater less than the sum of its proper divisors.  The 
result of Jordanus states that a nontrivial multiple of a perfect number is abundant and a 
nontrivial divisor of a perfect number is deficient.  In particular, this implies that every 

nontrivial multiple of 6, 28, … is abundant. 

 
Nicole Oresme 

 
On pages 284 – 285 of Burton there is brief reference to Nicole Oresme (oh – REM, 
1323 – 1382), who is widely viewed as an important figure in 14th century mathematics.   
Oresme made several highly original contributions to mathematics, many of which were 
centuries ahead of their time and some of which had a more immediate impact. 
 

Fractional exponents.  Oresme proposed a mathematically sound way of defining 
positive fractional powers of a number and even raised the possibility of irrational powers 

like sqrt(2). 
 

Graphical representation of functions.  The book, Tractatus de figuratione 
potentiarum et mensurarum (Latitude of Forms), written by Oresme or one of his 
students, popularized the idea of representing variable quantities graphically; we have 
already noted that the methods of Apollonius had anticipated the development of 
coordinate geometry much earlier, but the idea of representing variables was presented 
very clearly in Oresme’s work, and its influence can be measured by the numerous 
editions of his work that were published well into the 16th century.   His suggestion that 
physically measurable quantities are continuous has been implicitly assumed in many 
applications of mathematics to science and engineering for centuries.  Oresme also 
speculated about graphical representations of quantities dependent on two variables by 
surfaces in three dimensions and possibly about analogs in even higher dimensions, but 
the mathematical notation at the time was inadequate. 
 

Infinite series.  During the 14th century western mathematicians began to cast aside the 
Greek reluctance to consider infinite processes, and in particular various infinite series 
were studied.   It should be noted that Indian and Chinese mathematicians had studied 
such series much earlier, and some particularly noteworthy results of theirs from earlier 
times through the 15th century were rediscovered after the relevance of calculus to 
infinite series became apparent in the early 18th century.  In particular, we have noted 

that the Indian mathematician Madhara (1340 – 1425) discovered the familiar infinite 

series for the inverse tangent function and the specialization to an infinite series for ππππ/4, 

and in the next century Nilakantha Somayaji discovered a series that converges far more 
rapidly: 



 

 

 

 
 

Further information on this formula is given in the following paper: 

R. Roy.  Discovery of the Series Formula for ���� by Leibniz, Gregory, and 
Nilakantha.  Mathematics  Magazine 63 (1990), 291 – 306. 

 

Since geometric series are probably the simplest and most basic examples of infinite 
series, it is not surprising that medieval mathematicians were able to derive the standard 
formulas for such series without much trouble, and in fact they looked at numerous other 
problems.  In Western Europe the flourishing of Scholasticism (especially during the 13th 
and 14th centuries) was an important force behind interest in such issues, for this school 
of thought applied the ideas and methods of classical Greek philosophy to many new 
types of questions, including issues related to the notion of infinity.   We shall say more 
about this in a subsequent unit.  
 

Oresme used his graphical approach to provide an elegant proof for the following infinite 

series formula due to Robert Suiseth (or Swineshead) (c. 1340 – 1360), who was also 
known as Calculator: 
 

 
 

A derivation of this formula by means of power series and calculus appears in the online 
reference  http://math.ucr.edu/~res/math9C/seriesexample.pdf, but here we shall show 
how one can also prove it using basic results on rearrangements of infinite series.  
Specifically, consider the following tableau: 

 

 
 

Note that in ordinary addition of finite sums, the answer does not depend upon the order 
or grouping of summation and that the regrouping suggested by the preceding tableau 
involves an infinite rearrangement and regrouping.  For sums of positive quantities it is 
possible to justify such rearrangements, but if one is working with sums that have both 
positive and negative terms, then serious problems can arise.  In particular, if we 

evaluate the infinite series for the inverse tangent of  x 
 

 



 

 

 

at    x   =   1 we know that the answer is    ππππ/4, but we can rearrange the terms in this 

series to realize an arbitrary real number as the sum;  it is also possible to find 
rearrangements in which the new series fails to converge.  A standard reference for this 
fact is the classic book by    W. Rudin,        Principles of Mathematical Analysis (3rd Ed.),        

pages 75 – 77. 
 

Finally,        Oresme appears to be the first person in the history of mathematics to discover 
that the harmonic series  
 

 
 

diverges.  His proof is the same one that is often seen today in textbooks:  The sum of 

the first term by itself is ½, the sum of the next two terms is also ½ , the sum of the 

next four terms is again ½, and so on; therefore, if one adds together sufficiently many 

terms from this series the sum will exceed any chosen positive real number. 


