
 8.B.  The result of Regiomontanus on tetrahedra 
 

 
We have already mentioned that Plato’s theory that the five regular polyhedra represent 

the fundamental elements of nature, and in Unit 3.D of the notes we included the 
following graphical summary of his ideas:   
 

 
 
However, Plato’s student Aristotle disagreed with this, and his reasons were based upon 
geometrical properties of the regular polyhedra.  The first step is a hypothesis on atomic 
and crystalline structure; namely, if pure forms of the elements existed then they should 
fill a region of space with the corresponding solid regular polyhedra in a manner 
analogous to the standard filling of space by solid cubes that only meet in common 

boundary faces or edges; for example, in the 3 – dimensional coordinate plane we can 

take the solid cubes whose coordinates satisfy 
 

a  ≤  x  ≤  a + 1, b  ≤  x  ≤  b + 1,  c  ≤  x  ≤  c + 1 
 

for suitable integers a, b, c.   Aristotle claimed that the only solid regular polyhedra 
which fill space in a regular manner are the cube and the regular tetrahedron, but he did 
not give reasons for his assertion.   Between the time of Aristotle and the late 15th 
century, there were many attempts to understand and prove his assertion about filling 
space with solid regular tetrahedra, but in the second half of the 15th century 

Regiomontanus proved that one cannot find a regular decomposition of 3 – dimensional 
space into solid regular tetrahedra that all have the same size.  The main goal of this 
discussion is to explain why such decompositions cannot exist.    
 

The result of Regiomontanus is significant because it marks a notable advance in 

recognizing empirical difficulties with classical Graeco – Roman scientific theories and 
replacing them with more accurate models.  This was a fairly gradual process, and one 
early step was the fundamental work of Alhazen on optics in the 11th century, which was 
mentioned in Unit 6.  In the West, one of the earliest advances was the work of Jordanus 
in the 13th century on inclined planes, which was mentioned in Unit 7.  Further work of 
this sort on mechanics was done beginning in the late 13th century, largely by scholars at 
Merton College in Oxford, and of course the 16th and early 17th centuries saw many 
revolutionary insights, of which the breakthroughs of Copernicus and Galileo are 
probably the best known.  Several topics in Regiomontanus’ work anticipate the radical 
changes in scientific thought which took place during the next century.  We have noted 
that his writings clearly mark the emergence of trigonometry as a subject in its own right, 
and trigonometric calculations play a key role in any disproof of Aristotle’s assertion.   



 

The following reference contains some historical background and further commentary on 
the questions considered here: 
 

M. Senechal.  Which Tetrahedra Fill Space?  Mathematics Magazine, 

Vol. 54 (1981), pp. 227 – 243. 
 

We shall first state the problem in precise mathematical terms, and we shall next 
describe some input from spherical geometry that will be useful.  The main result will 
then follow fairly directly. 
 
 

Statement of the problem 
 
 

We shall formulate nearly everything in terms of solid analytic geometry and a preferred 

coordinate system for Euclidean 3 – space, and we shall denote geometric points by 3 – 
dimensional vectors whenever it is convenient to do so.   
 

How does one define a regular solid tetrahedron analytically?   The simplest 

characterization is in terms of the vertices.  The four points w, x, y, z must satisfy the 
following conditions: 
 

 (a) No plane contains all four of them. 
 

 (b) The distances between all pairs of vertices are equal. 
 

Of course, the second condition is analogous to the standard property for vertices of an 

equilateral triangle.  The solid regular tetrahedron with vertices w, x, y, z is given by 

the set of all points v which can be written as linear combinations 
 

v   =   a w + b x + c y + d z 
 

where  a, b, c, d  ≥  0  and  a + b + c + d  =  1.   The four 2 – dimensional triangular 

faces of this tetrahedron are the solid triangles consisting of all points where one of the 

coefficients a, b, c, d is zero, and the six 1 – dimensional edges are the closed line 
segments consisting of all points where two of these coefficients are zero.  The picture 
below depicts a solid regular tetrahedron; three of the four triangular faces are visible, 
and the remaining triangular face (given by the “outside” vertices) is hidden from view. 

 

 
 

(Source:  http://en.wikipedia.org/wiki/Tetrahedron ) 



 

What is a regular decomposition?   We should expect this to resemble either the 

standard regular decomposition of 3 – space into cubes whose edges all have length 

one or any of the standard regular tilings (or tessellations) of the plane by equilateral 
triangles, squares or regular hexagons that are illustrated below:  

 
 

Specifically, there should be a family of solid regular tetrahedra  A  p such that all the 
following hold: 
 

 (a) The lengths of all the edges of all the (solid) tetrahedra  A  p are equal. 
 

 (b) Every point of 3 – space lies in at least one of the tetrahedra  A  p. 
 

 (c) Two tetrahedra A  p and A  q meet in a common face, edge or vertex. 
 

 (d) The number of tetrahedra containing a vertex is the same for all vertices. 
 

 (e) The number of tetrahedra containing an edge is the same for all edges. 
 

 ( f ) The number of tetrahedra containing a face is equal to 2. 
 

The first property says that  all the regular tetrahedra have the same size (they 
automatically have the same shape), the second two say that  one has a reasonable 
decomposition of space into such tetrahedra, and the final three are assumptions 
that  the decomposition is uniform throughout space, not changing if one moves 
from one point or vertex or face to another.  One can actually get by with a much shorter 
list of underlying assumptions, but then the mathematical proofs will be longer because 
each of our six conditions must eventually be verified. 
 
We shall need the following fact about regular tetrahedra. 
 

Theorem.   Suppose that T is a regular solid tetrahedron in Euclidean 3 – space whose 

edges all have length equal to e, let O be a vertex of T, and let F be the center point of 

the face opposite O.  Then the distance from O to F is equal to e · sqrt(6)/3. 
 

A derivation of this result in the special case e  =  1 appears at the online site 
 

http://www.uwgb.edu/DutchS/symmetry/TetrahedronProps.htm 
 

and a picture accompanying that derivation is reproduced on the next page for the sake 

of convenience.  The coefficient sqrt(6)/3 is approximately equal to 0.8164966.  Since 

OF is perpendicular to plane ABC and the shortest distance from O to the plane of ABC 
is along the perpendicular, it follows that if X is a point in the solid tetrahedron OABC 

such that the distance from O to X is strictly less than e · sqrt(6)/3, then X does not lie 

on the face ABC. 
 



 

 
Input from spherical geometry 

 
Suppose now that we take the points which lie on the solid tetrahedron T and also on the 

sphere S(R) of radius R with center at the point O, where R is less than e · sqrt(6)/3.  

This intersection is a “closed spherical triangle” whose vertices U, V, W are the points 
where the segments [OA], [OB], [OC] meet the sphere S(R).    
 

 
 

This picture is modified from an illustration at the following site: 
 

http://mathworld.wolfram.com/SphericalTrigonometry.html 
 

The lengths of the arcs joining U to V, V to W, and W to U all have equal length, and in 

fact they correspond to 60 degree angles.  However, the measurements of the spherical 

vertex angles for the spherical triangle at U, V and W are NOT equal to 60 degrees; the 

measurements of these vertex angles are equal, but the value is strictly greater than 60 

degrees (the sum of the vertex angle measurements for a spherical triangle is always 

greater than 180 degrees).   
 

Computing the measurement of the vertex angles.   For the sake of definiteness, let 

us consider the measurement of the angle at the vertex V.   By Formula (31) in the 



previously cited link  http://mathworld.wolfram.com/SphericalTrigonometry.html  we have 
the following general relationship connecting the measure of the vertex angle at V and 

the angular measurements u, v, w of the sides of the equilateral spherical triangle with 
vertices U, V and W. 
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As in the classical Heron’s Formula for the area of a triangle in terms of the lengths of its 

sides,  we have s  =  ½ (u + v + w).   We already know that u  =  v  =  w  =  60 

degrees, so it follows that the displayed expression is equal to 2/3.   If we combine this 

with the basic formula 1cos22cos
2

−= θθ  we find that  the cosine of the vertex 

angle at  V (hence also at  U  and  W) is equal to  1/3, so that the degree angular 
measurement of the vertex angles in the spherical triangle are equal to approximately 

70.528779  degrees because the latter angle is approximately equal to the inverse 

cosine of  1/3.   

 
Conclusion of the argument 

 
Suppose that we have a regular decomposition of space into regular tetrahedra as 

described previously, and let m be the number of tetrahedra containing a given edge.  If 
we now look at the corresponding decomposition of the sphere S(R) into equilateral 
spherical triangles, then we see that each vertex V of the sphere decomposition also lies 

on exactly m spherical triangles.  Furthermore, any two such triangles intersect in a 
common edge, and therefore the common value for the degree measurement of the 

vertex angles at V must be equal to 360/m degrees.  If V is the North Pole or South 
Pole, this is particularly apparent from the distorted illustration below: 

 

 

 
  

(Source: http://www.uwgb.edu/dutchs/structge/sphproj.htm) 



 

If we now let m range over the positive integers 1, 2, 3, … then the values obtained for 

360/m are equal to 360, 180, 120, 90, 72, 60, and other positive values all of which are 

strictly less than 60.  In particular, we see that the cosine of 360/m degrees is never 

equal to 1/3 when m is a positive integer, contradicting the conclusions in the previous 

paragraph.   It now follows that there is no regular decomposition of 3 – dimensional 

space into regular tetrahedra. 
 
 

Remarks on the other cases 
 
 

Although it may seem intuitively clear that one cannot have regular decompositions of 

Euclidean 3 – dimensional space into congruent regular octahedra, icosahedra or 
dodecahedra, a mathematical proof is necessary to show that no such decompositions 

can exist.  A proof using more advanced methods is given in Section 4.6 of the following 
classic textbook: 
 

H. S. M. Coxeter, Regular polytopes (3
rd

 Ed.).  Dover Publications, New 

York, 1973. ISBN: 0 – 486 – 61480 – 8 

 


