
12. The development of calculus  
 
 

(Burton,  8.3 – 8.4) 
 

 

  
We have already noted that certain ancient Greek mathematicians — most notably 

Eudoxus and Archimedes — had successfully studied some of the basic problems and 
ideas from integral calculus, and we noted that their method of exhaustion was similar to 
the modern approach in some respects (successive geometric approximations using 
figures whose measurements were already known) and different in others (there was no 
limit concept, and instead there were delicate reductio ad absurdum arguments).  
Towards the end of the 16th century there was further interest in the sorts of problems 
that Archimedes studied, and later in the 17th century this led to the independent 

development of calculus in Europe by Isaac Newton (1643 – 1727) and Gottfried 

Wilhelm von Leibniz (1646 – 1716).    
 

Two important factors led to the development of calculus originated in the late Middle 
Ages, and both represented attempts to move beyond the bounds of ancient Greek 
mathematics, philosophy and physics.   
 

1. Interest in questions about infinite processes and objects.   As noted 
earlier, ancient Greek mathematics was not equipped to deal effectively 
with Zeno’s paradoxes about infinite and by the time of Aristotle it had 
essentially insulated itself from its “horror of the infinite.”   However, we 
have also noted that Indian mathematicians did not share this reluctance 
to work with the concept of infinity, and Chinese mathematicians also 
used methods like infinite series when these were convenient.  During 
the 14th century the mathematical work of Oresme and others on infinite 
series complemented the interests of the scholastic philosophers; 
questions about the infinite played a key role in the efforts of scholastic 
philosophy to integrate Greek philosophy with Christianity.   Philosophical 

writings by scholars including William of Ockham (1285 – 1349), Gregory 

of Rimini (1300 – 1358), and Nicholas of Cusa (1401 – 1464) provided 

insights which anticipated the concept of limit — a basic part of calculus 
as we know it.   

  

2. Interest in questions about physical motion.  During the 13th century 
Jordanus de Nemore discovered the mathematically correct description 
for the physics of an inclined plane (a result that had eluded Archimedes 
and was described incorrectly by Pappus), and later members of the 

Merton school in Oxford such as T. Bradwardine (1290 – 1349) and W. 

Heytesbury (1313 – 1373) had discovered an important property of 
uniformly accelerated motion; namely, the average velocity (total 
distance divided by total time) is in fact the mathematical average of the 
initial and final velocities.   The significance of this concept for the motion 
of freely falling bodies was not understood at the time and would not be 
known until the work of Galileo and others in the 16th century.  During the 
late 16th century interaction between mathematics and physics began to 



increase at a much faster rate, and many important contributors to 
mathematics such as S. Stevin also made important contributions to 
physics (in Stevin’s case, the centers of mass for certain objects and the 
statics and dynamics of fluids). 

 

Here are some online references to further information about the topics from the Middle 
Ages described above: 

 

http://www.math.tamu.edu/%7Edallen/masters/medieval/medieval.pdf 
 

http://www.math.tamu.edu/%7Edallen/masters/infinity/infinity.pdf 
 

http://plato.stanford.edu/entries/heytesbury/ 
 

 
Problems leading to the development of calculus 

  
In the early 17th century mathematicians became interested in several types of 
problems, partly because these were motivated by advances in physics and partly 
because they were viewed as interesting in their own right.   
 

1. Measurement questions such as lengths of curves, areas of planar 
regions and surfaces, and volumes of solid regions, and also finding 
the centers of mass for such objects. 

 

2. Geometric and physical attributes of curves, such as tangents and 
normals to curves, the concept of curvature, and the relation of these 
to questions about velocity and acceleration. 

 

3. Maximum and minimum principles; e.g., the maximum height 
achieved by a projectile in motion or the greatest area enclosed by a 
rectangle with a given perimeter. 

 

Specific examples of all three types of problems had already been studied by Greek 
mathematicians.   The results of Eudoxus and Archimedes on the first type or problem 
and of Archimedes and Apollonius on the second have already been discussed.   We 

know about the work of Zenodorus (200  – 140  B.C.E.) on problems in the third type 
because it is reproduced in Pappus’ anthology of mathematical works (the previously 
cited Collection or Synagoge).   Some examples of Zenodurus’ results are 
 

(1) among all regular n – gons with a fixed perimeter, a regular n – gon 
encloses the greatest area,  

(2) given a polygon and a circle such that the perimeter of the polygon 
equals the circumference of the circle, the latter encloses the 
greater area,  

(3) a sphere encloses the greatest volume of all surfaces with a fixed 
surface area. 

 
GIVE REFERENCES 

 
Infinitesimals and Cavalieri’s Principle 

 
We shall attempt to illustrate the concept of infinitesimals with an example of its use to 



determine the volume of a geometrical figure. 
 

Usually the formula for the volume of a cone is derived only for a right circular cone in 
which the axis line through the vertex or nappe is perpendicular to the plane of the base.   
It is naturally to ask whether there is a similar formula for the volume of an oblique cone 
for which the axis line is not perpendicular to the plane of the base (see the drawing 
below).   One can answer this question using an approach developed by B. Cavalieri 

(1598 – 1647).  Similar ideas had been considered by Zu Chongzhi, also known as Tsu 

Ch’ung – chin (429 – 501), but the latter’s work was not known to Europeans at the time. 
 

CAVALIERI’S PRINCIPLE.  Suppose that we have a pair three-dimensional solids S 

and T that lie between two parallel planes P1 and P2, and suppose further that for each 

plane Q that is parallel to the latter and between them the plane sections   Q  ∩∩∩∩  S and   

Q  ∩∩∩∩  T have equal areas.  Then the volumes of S and T are equal. 
 

Here is a physical demonstration which suggests this result:  Take two identical decks of 
cards that are neatly stacked, just as they come right out of the package.  Leave one 
untouched, and for the second deck push along one of the vertical edges so that the 
deck forms a rectangular parallelepiped as below. 
 

 
 

In this new configuration the second deck has the same volume as first and it is built out 
of very thin rectangular pieces (the individual cards) whose areas are the same as those 
of the corresponding cards in the first deck.   So the areas of the plane sections given by 
the separate cards are the same and the volumes of the solids formed from the decks 
are also equal.   
 

We shall now apply this principle to cones.  Suppose we have an oblique cone as on the 
right hand side of the figure below.  On the left hand side suppose we have a right 
circular cone with the same height and a circular base whose area is equal to that of the 
elliptical base for the second cone. 
 

 
 

Figure illustrating Cavalieri’s Principle 

 

In the notation of Cavalieri’s Principle, we can take P1 to be the plane containing the 

bases of the two cones and P2 to be the plane which contains their vertices and is 



parallel to P1.  Let Q be a plane that is parallel to both of them such that the constant 

distance between P2 and Q is equal to y; we shall let h denote the distance between P1 

and P2, so that h is also the altitude of both cones.  If b denotes the areas of the bases 
of both cones then the areas of the sections formed by intersecting these cones with Q 

are both equal to b y
2/ h

2
.  Therefore Cavalieri’s Principle implies that both cones have 

the same volume, and since the volume of the right circular cone is b h
2/ 3 it follows that 

the same is true for the oblique cone. 
 

One approach to phrasing our physical motivation in mathematical terms is to imagine 
each cone as being a union of a family of solid regions given by the plane sections; for 
the right circular cone these are regions bounded by circles, and for the oblique cone 
they are bounded by ellipses.  Suppose we think of these sections as representing 
cylinders that are extremely thin.  Then in each case one can imagine that the volume is 

formed by adding together the volumes of these cylinders, whose areas — and 

presumably thicknesses — are all the same, and of course this implies that the 
volumes of the original figures are the same.  One fundamental question in this 
approach is to be more specific about the meaning of “extremely thin.”  Since a planar 
figure has no finite thickness, one might imagine that the thickness is something less, 
and this is how one is led to the concept of a thickness that is  infinitesimally small.   
 

The preceding discussion suggests that an infinitesimal quantity is supposed to be 
nonzero but is in some sense smaller than any finite quantity.  If we are given a 
geometric figure that can be viewed as a union of “indivisible” objects with one less 

dimension — for example, the planar region bounded by a rectangle viewed as a union 
of line segments parallel to two of the sides, or the solid region bounded by a cube as a 

union of planar regions bounded by squares parallel to two of the faces — then the 
idea is to view the square as a union of rectangular regions with infinitesimally small 
width or the square as a union of solid rectangular regions with infinitesimally small  
height.  Likewise, this approach suggests an interpretation of a continuous curve as 
being composed of a family of straight lines with infinitesimally small length.  When 
applied to our examples of cones, it leads to thinking of the solid region bounded by 
either cone as a union of circular or elliptical cylinders with infinitesimally small height. 
 

Mathematicians and users of mathematics have though about infinitesimals for a long 
time.   They already appear in the mathematics of the early Greek atomist philosopher 

Democritus (460 – 370 B.C.E.) and an approach to squaring the circle developed by 
Antiphon, but advances by Eudoxus and others during the 4th century B.C.E. enabled 
Greek mathematicians to avoid the concept, and this fit perfectly with the reluctance of 

Greek mathematicians and philosophers (e.g., Aristotle) to eliminate questions about the 
infinite from their mathematics.  Taking the somewhat obscure form of “indivisibles,” 
they reappeared in the mathematics of the late Middle Ages, and they played an 

important role in the work of J. Kepler (1571 – 1630) on laws of planetary motion, 
particularly his Second Law which states that the orbits of planets around the sun sweep 
out equal areas over equal times.   During the 17th century infinitesimals were used 
freely by many mathematicians and scientists who contributed to the development of 
calculus, and in particular both Newton and Leibniz used the concept in their definitive 
accounts of the subject.  However, as calculus continued to develop, doubts about the 
logical soundness of infinitesimals also began to mount.  Such questions ultimately had 



very important consequences for the development of mathematics, and they will be 
discussed later in the next unit. 
 

A brief discussion of Cavalieri’s Theorem, its importance for classical geometry, and its 

interpretation in terms of integral calculus appears on pages 156 – 159 (=  document 
pages 15 – 17) of the following online reference: 
 

http://math.ucr.edu/~res/math133/geometrynotes3c.pdf 

 
A general comment on coverage and attribution 

 
During the 17th century many mathematicians were interested in similar problems, and 
many results were discovered independently by two or more researchers.  Not all such 
cases can be described completely in a brief summary such as these notes; one guiding 
principle here is to mention the persons whose work on a given problem had the most 
impact.  EVES QUOTE 

  
Progress on measurement questions 

 
Methods and results from Archimedes and others provided important background and 
motivation for work in this area.  We have already discussed the use of infinitesimals to 
derive formulas in some cases, and there was a great deal of further work based upon 
such ideas.  In particular, during the time before the appearance of Newton’s and 
Leibniz’ work, many of the standard examples in integral calculus had been worked out 
by preliminary versions of methods that became standard parts of the subject.  Here are 
some specific examples:  
 

Integrals of polynomials and more general power functions.
   

Cavalieri computed 

the integral of
 
x

 n 
geometrically in cases where n is a positive integer, Gregory of St. 

Vincent (1584 – 1667) integrated 1/x  in geometric terms that are equivalent to the usual 

formula involving log e x, and J. Wallis (1616 – 1703) generalized the integral formula for 
 

x
 n 

to other real values of n.  —  Wallis was a particularly important figure in the 
development of calculus for several reasons.  His methods, which are discussed on 

pages 357 – 360 of Burton, replaced geometric techniques with algebraic computations 
and analytic considerations, and as such they are a milestone in the development of 
analysis (calculus) as a subject distinct from both algebra and geometry.  In an entirely 
different direction, Wallis is also known today for his applications of integral formulas to 

derive his infinite product formula for ππππ/2: 
 

 
 

We should note here that an earlier infinite product formula involving ππππ  
 

 

 

had been discovered by Viète (and, as noted earlier, Indian mathematicians had already 



discovered some of the standard infinite series formulas involving  ππππ). REFERENCES 

osler 
 
Measurements involving the cycloid curve and regions partially bounded by it.  
There was an enormous amount of interest in the properties of the cycloid curve during 
the 17th century, and there were also some bitter disputes about priorities among some 
of the numerous mathematicians who worked on this example.   Results included 
computations of arc lengths as well as areas, volumes and centers of mass associated 
to the curve.  Mathematicians whose names are associated with this work include B. 

Pascal (1623 – 1662), E. Torricelli (1608 – 1647), and G. P. de Roberval (1602 – 1675).   
 
Infinite solids with finite volume.  Torricelli also discovered a fact that few if any 
mathematicians had anticipated; namely, the existence of an unbounded solid of 
revolution whose volume is finite.  His example is an unbounded piece of the solid 

formed by rotating the standard hyperbola    y =    1/ x    about the    x – axis. 

 
Arc length.  Early in the 17th century there were doubts about the possibility of 
computing the arc lengths of many curves, including some extremely familiar examples.   

Results of H. van Heuraet  (1633 – 1660)  showed the problem of finding arc length of a 
given curve is equivalent to determining the area under another curve, and he also 

worked out certain examples including the semi – cubical parabola  a y 

2
   =   x 

3
.  The 

arc length of a spiral curve was computed by Roberval. 
 
Integrals and series expansions of transcendental functions.   Results on the 
integrals of the standard trigonometric functions were obtained by Pascal, Roberval, I. 

Barrow (1630 – 1677) and J. Gregory (1638 – 1675).  The standard infinite series 

expansion for arctan x was obtained by Gregory (however, as noted before, the Indian 
mathematician Madhava had discovered the formula two centuries earlier), and the 

standard infinite series expansion for log e (1 + x) was obtained by N. Mercator (1620 – 
1687); the latter should not be confused with the mathematical cartographer G. Mercator 
mentioned earlier.  Gregory also made numerous other contributions, including 
extending and applying the classical method of exhaustion to questions about other 
conic sections and writing the first text covering the material that would become calculus. 

  
Progress in differentiation and maximization/minimization problems 

  
Greek mathematics provided far less insight into questions about tangent lines or 
maximizing functions than it did for computing areas and volumes.  In particular, there 
were no general principles comparable to the method of exhaustion for describing 
tangents; each example was treated in an entirely separate manner.  Therefore one 
major problem facing 17th century mathematicians was to produce a workable concept of 
tangent line. 
 

Some names particularly associated with this problem are Descartes, Fermat, Roberval 
and Barrow.  Descartes’ approach was based on finding the normal (perpendicular) line 
to a curve at a point, and Roberval’s was motivated by the standard interpretation of a 
parametrized curve as the path of a moving object.  Fermat and Barrow both defined 
tangent lines by the method that has become standard; namely, the tangent line to a 

curve  C  at a point  x  is a limit of the secant lines joining  x  to a second point  y on C 



as  y  approaches x.   Fermat understood the basic idea, but Barrow’s language (i.e., his 
differential triangle) was more precise.  A discussion of Barrow’s work appears on 

pages 363 – 364 of Burton.   
 

As in the case of measurement problems, examples were the focal point of work on 
tangents.  The standard results on the slopes of tangent lines for polynomial graphs 
were obtained by Fermat in the monomial case and in complete generality by Hudde.  
Applications of derivatives to repeated roots of polynomials were also discovered at this 
time.  Tangent lines to the cycloid were determined independently by Descartes, Fermat 
and Roberval.   
 

Fermat also studied maximization and minimization problems using the approach he 
developed for tangent lines.  We note that he was interested in several different types of 
minimization problems in mathematics and physics, including the determination of a 
point inside a triangle such that the sum of the distances to all three sides is minimized, 
and more significantly his Least Time Principle in optics, which states that a beam of 
light will take the path from one point to another that takes the shortest amount of time 
and yields the standard physical laws governing refraction and reflection.  Further 
discussion of such basic minimization problems is contained in the following book: 
 

S. Hildebrandt and A. Tromba.  The Parsimonious Universe.  
Springer – Verlag, New York, 1996.  ISBN: 0 – 387 – 97991 – 3. 

 

A result of Kepler’s on maximization (the Wine Barrel Problem) can also be mentioned 
at this point.  He observed that a wine merchant had figured the amount of wine in a 
barrel by inserting a rod into the barrel diagonally through a small hole in the top. When 

the rod was removed, the length L of the rod which was wet determined the price for the 
barrel.   Kepler was concerned about the uniformity of pricing by this method and 
decided to analyze its accuracy; he correctly realized that a taller, narrower barrel might 
yield the same measurement as a shorter, wider one, resulting in the same wine price, 

even though its volume would be considerably smaller (see the figure below). 
 

 

 

(Source: http://www.ugrad.math.ubc.ca/coursedoc/math100/notes/apps/maxmin.html ) 
 

In his approach to determine the volume, Kepler approximated the barrel by a cylinder 

with base radius r of the base and height h; the conditions of the problem imply the 

equation r 

2
  +  h

2
 =    L 

2
.  He then looked for the values of  r  and  h  giving the largest 

volume    V    when    L (which determines the cost) is held constant.  Using differential 

calculus one can show that the relation between L and h must be 3 L 

2
   =   h

2
, which is 

the answer that Kepler found using less refined methods.  He also observed that the 

shapes of the wine barrels were close to this optimal value — in fact, so close that he 



could not believe this was a coincidence.  Of course, the manufacturing processes then 
were less uniform than they are now, so is was unlikely that all barrels satisfied this 
mathematical specification precisely, but Kepler further noted that if a barrel deviated 
slightly from the optimal ratio this would have little effect on the volume  because the 
volume function changes very slowly near its maximum. 

 
Other contributions of Kepler 
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The emergence of calculus 

 
Since many of the basic facts in calculus were known before the work of Newton and 
Leibniz, it is natural to ask why they are given credit for inventing the subject.  Others 
came very close to doing so; in particular, Barrow understood that the process for finding 
tangents (differentiation in modern terminology) was inverse to the process for finding 
areas (integration in modern terminology).  In these notes we shall focus on the decisive 
advances that make the work of Newton and Leibniz stand out from the important, high 
quality results due to many of their excellent contemporaries. 
 

1. Before Newton and Leibniz techniques for differentiating and integrating 
specific examples had been developed, but they were the first to set 
general notation and define general “algorithmic processes” for each 
construction.   Earlier workers were not able to derive useful and general 

problem – solving methods. 
 

2. Newton and Leibniz recognized the usefulness of differentiation and 

integration as general processes, not just as  ad hoc methods to solve 
measurement and tangent problems in important special cases.  
Apparently no one (at least in Europe) had previously recognized the 
usefulness of calculus as a general mathematical tool.  

 

3. With the exception of Barrow, the inverse relationship between 
differentiation and integration had not been clearly recognized in earlier 
work, and Newton and Leibniz were the first to formulate it explicitly and 
establish it in a logically convincing manner.   

 

4. Both stated the main ideas and results of calculus algebraically, so that 
the subject was no longer an offshoot of classical Greek geometry but 
significantly broader in scope and poised to make fundamental 
contributions to many areas of knowledge. 

 

Sections 8.3 and 8.4 of Burton contain a great deal of detail about the scientific and 

philosophical contributions of Newton (see pages 365 – 381) and Leibniz (see pages 

383 – 402).  In particular, the bitter and heated dispute about credit for discovering 
calculus is described there.  We shall only summarize the points that are now generally 
accepted:   The discoveries of Newton and Leibniz were essentially independent, and 
although Newton was the first to develop the subject, Leibniz published his version first.   
We should add that the discoveries by Newton and Leibniz took place around 1665 and 
1673 respectively.  Leibniz’ work was published in 1684 while Newton’s was published 

1736, nearly a decade after his death.  Rather than dwell on the dispute over priorities, 
we shall discuss a few substantive similarities and differences between the work of 
Newton and Leibniz. 
 

Many of the similarities were already mentioned in the reasons why Newton and Leibniz 
are given credit for creating calculus.  One additional similarity is that each used both 
differentiation and integration to solve difficult and previously unsolved problems.  Both 

also proved many of the same basic results; e.g., the standard rules for differentiating 
functions, the Fundamental Theorem of Calculus, and the basic formal integration 
techniques which appear in calculus textbooks.  On the other hand, Newton and Leibniz 
clearly had different priorities and these can be seen in some differences between their 



approaches and conclusions. 
 

1. The standard binomial series expansion for  (1 + x) 

a
, where a is an 

arbitrary real number and | x |  < 1, is solely due to Newton. 
 

2. Newton used the words fluxion and fluent to denote the derivative and 
integral, and he denoted derivatives by placing dots over variables.   

Leibniz ultimately adopted the  dx  notation and the integral sign that 
have been standard for centuries. 

 

3. Newton was primarily interested in the uses of calculus to study problems 
involving motion, while Leibniz’ work and interests involved finding 
extrema and solving differential equations. 

 

4. Newton discovered the rules and processes of calculus by a study of 
velocity and distance, while Leibniz did so via algebraic sums and 
differences. 

 

5. Newton used infinitesimals as a computational means, while Leibniz used 
them directly. 

 

6. Newton’s priority was differentiation while Leibniz’ was integration. 
 

7. Newton stressed the use of infinite series to express functions, while 
Leibniz preferred solutions that could be written in finite terms. 

 

8. Leibniz gave more general rules and more convenient notation. 
 

The other important writings of Newton and Leibniz reflect some of the differences 
mentioned above.   Leibniz wrote many lengthy and highly influential works on 
philosophy, while Newton wrote several important books on the sciences.  The latter 
include his best known work, Philosophiæ naturalis principia mathematica (The 
Mathematical Principles of Natural Philosophy), which remains of the most important 
books in the sciences ever written.  In this book he developed the laws of motion using 
calculus and used them to derive Kepler’s laws of planetary motion.  An extremely brief 
but informative summary of Principia is available at the following online site: 
 

http://www.answers.com/topic/newton-s-principia 
 

We have already mentioned some common aspects of Newton’s and Leibniz’ legacies 
with respect to calculus, and we shall conclude this discussion by mentioning some 
noteworthy differences:   
 

1. Newton’s applications of calculus ultimately determined the direction of 
subsequent work in mathematics and physics. 

 

2. Leibniz’ formulation of calculus ultimately determined how the mathematical 

aspects of this work were formulated (however, Newton’s dot notation   for 
derivatives is still used sometimes in physics to denote derivatives with 
respect to time). 

 

  
Other contributions of Newton and Leibniz 
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