14.D. An unusual smooth function

In the preceding file (14.C) we mentioned that the antiderivative of $\exp \left(-\boldsymbol{a} \boldsymbol{x}^{\mathbf{2}}\right)$ cannot be expressed finitely in terms of the standard functions in elementary calculus, but it does have a fairly simple and extremely useful infinite series expansion. Our purpose here is to discuss a function with diametrically opposite properties: It can be expressed in fairly simple terms and it is infinitely differentiable everywhere, but it cannot be expressed as a convergent power series near $\boldsymbol{x}=\mathbf{0}$. Most of the material below is taken from the following online site:
http://planetmath.org/encyclopedia/InfinitelyDifferentiableFunctionThatlsNotAnalytic.html
If \boldsymbol{f} is an infinitely differentiable function at $\boldsymbol{x}=\boldsymbol{a}$, then we can certainly write a Taylor of Maclaurin series for f at $\boldsymbol{x}=\boldsymbol{a}$ using the higher order derivatives $f^{(\boldsymbol{n})}(\boldsymbol{a})$, where $\boldsymbol{n} \geq \mathbf{0}$. However, it does not necessarily follow that the power series for \boldsymbol{f} actually converges to f, as the following example shows:

Define f by the conditions

$$
f(x)= \begin{cases}e^{-\frac{1}{x^{2}}} & x \neq 0 \\ 0 & x=0\end{cases}
$$

Then \boldsymbol{f} is an infinitely differentiable function, and for all nonnegative integers \boldsymbol{n} we have $\boldsymbol{f}^{(\boldsymbol{n})} \mathbf{(0)}=\mathbf{0}$ (see below). Therefore the Maclaurin series for \boldsymbol{f} at $\boldsymbol{x}=\mathbf{0}$ is just 0. Since $\boldsymbol{f}(\boldsymbol{x})>\mathbf{0}$ when \boldsymbol{x} is nonzero, clearly this series does not converge to \boldsymbol{f}.

$$
\text { Proof that } f^{(n)}(0)=0
$$

Let $\boldsymbol{p}(\boldsymbol{x})$ and $\boldsymbol{q}(\boldsymbol{x})$ be polynomials with real coefficients, and define

$$
g(x)=\frac{p(x)}{q(x)} f(x)
$$

Then for all nonzero values of \boldsymbol{x} we have

$$
g^{\prime}(x)=\frac{\left(p^{\prime}(x)+2 x^{-3} p(x)\right) q(x)-q^{\prime}(x) p(x)}{q^{2}(x)} \exp \left(-1 / x^{2}\right)
$$

If we now apply L'Hospital's Rule and the Mean Value Theorem, we see that

$$
g^{\prime}(0)=\lim _{x \rightarrow 0} g^{\prime}(x)=0 .
$$

If we set $\boldsymbol{p}_{\mathbf{0}}(\boldsymbol{x})=\boldsymbol{q}_{\boldsymbol{0}}(\boldsymbol{x})=\mathbf{1}$, then the preceding discussion recursively yields sequences of polynomials $\boldsymbol{p}_{\boldsymbol{n}}(\boldsymbol{x})$ and $\boldsymbol{q}_{\boldsymbol{n}}(\boldsymbol{x})$ such that for all nonzero values of \boldsymbol{x} we have

$$
f^{(n)}(x)=\left(\frac{p(x)}{q(x)}\right) f(x)
$$

Furthermore, it follows that $f^{(\boldsymbol{n})}(\mathbf{0})=\mathbf{0}$, which is what we wanted to show.
Useful properties of this function

The unusual behavior of the function \boldsymbol{f} at $\boldsymbol{x}=\mathbf{0}$ turns out to be important for many purposes, for because it yields some infinitely differentiable functions which are not constant functions but are constant on bounded or unbounded closed intervals. For example, consider the function $\boldsymbol{g}(\boldsymbol{x})$ which is equal to $\boldsymbol{f}(\boldsymbol{x})$ when $\boldsymbol{x} \geq \mathbf{0}$ and is set equal to zero for $\boldsymbol{x}<\mathbf{0}$. The graph of this function is sketched in the drawing below; note that the function is positive when \boldsymbol{x} is positive and as \boldsymbol{x} approaches $\mathbf{0}$ from the positive side it corresponds to an extremely soft landing of an airplane.

(Source: http://upload.wikimedia.org/wikipedia/commons/b/b4/Non-analytic smooth function.png)
It follows that \boldsymbol{g} is constant for nonpositive values of \boldsymbol{x}, but \boldsymbol{g} is infinitely differentiable for all values of \boldsymbol{x}, and $\boldsymbol{g}^{(\boldsymbol{n})}(\mathbf{0})=\mathbf{0}$ for all $\boldsymbol{n} \geq \mathbf{0}$. Further examples are described in the exercises for this unit.

