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SOLUTIONS TO EXERCISES FROM math153exercises01.pdf

As usual, “Burton” refers to the Seventh Edition of the course text by Burton (the page
numbers for the Sixth Edition may be off slightly).

Problems from Burton, p. 28

3. The fraction 1/6 is equal to 10/60 and therefore the sexagesimal expression is 0;10.

To find the expansion for 1/9 we need to solve 1/9 = x/60. By elementary algebra this means
9x = 60 or x = 6 2

3
. Thus

x =
6

60
+

2

3
· 1

60
=

6

60
+

40

60
· 1

60

which yields the sexagsimal expression 0; 6, 40 for 1/9.

Finding the expression for 1/5 just amounts to writing this as 12/60, so the form here is 0;12.

To find 1/24 we again write 1/24 = x/60 and solve for x to get x = 2 1

2
. Now 1

2
= 30

60
and

therefore we can proceed as in the second example to conclude that the sexagesimal form for 1/24
is 0;2,30.

One proceeds similarly for 1/40, solving 1/40 = x/60 to get x = 1 1

2
. Much as in the preceding

discussion this yields the form 0;1,30.

Finally, the same method leads to the equation 5/12 = x/60, which implies that 5/12 has the
sexagesimal form 0;25.

4. We shall only rewrite these in standard base 10 fractional notation. The answers are in
the back of Burton.

(a) The sexagesimal number 1,23,45 is equal to 1 × 3600 + 23 × 60 + 45.

(b) This number is equal to

12 +
3

60
+

45

60 × 60
.

(c) This number is equal to the previous one divided by 60.

(d) This number is simply equal to the first one divided by 60.

5. The general rule is to shift the semicolon one place to the right, so in this particular
example the product is 1,23,45;6.

Problems from Burton, p. 50

8. This is simply a matter of verifying an identity and checking it against the list in the
book, The expression for 2

7
follows from 7 + 1 = 8, the expression for 2

35
follows from 35 = 7 × 5

and 7 + 5 = 12, and finally the expression for 2

91
follows from 91 = 13 × 7 and 7 + 13 = 20.



13. This uses the identity

1

m
=

1

m + 1
+

1

m(m + 1)

which can be checked directly. If n divides m + 1 this means that m + 1 = n · q for some q, If we
multiply both sides of the displayed equation by n, substitute the factorization of m + 1 into the
equation and simplify, we then obtain the identity

n

m
=

1

q
+

1

q m
.

Problem from Burton, p. 62

9. (a) If we apply the formula in the exercise to each of the triangles 4ADC, 4DCB,
4CBA, 4BAD, we find that the sum of their areas is

1

2
dc sin D + 1

2
cb sin C + 1

2
ba sin B + 1

2
ad sin A .

Let X be the point where AC and BD meet. Then we have the following equations:

area(4ADC) = area(4AXD) + area(4DXC)

area(4DCB) = area(4DXC) + area(4CXB)

area(4CBA) = area(4CXB) + area(4BXA)

area(4BAD) = area(4BXA) + area(4AXD)

Now we also know that the area A of the quadrilateral ABCD is equal to

area(4DXC) + area(4CXB) + area(4BXA) + area(4AXD)

and if we add the previous four lines we find that the sum of the areas of 4ADC, 4DCB, 4CBA
and 4BAD is equal to 2A. Substituting this into the first expression in this exercise we obtain
the formula

2A = 1

2
dc sin D + 1

2
cb sin C + 1

2
ba sin B + 1

2
ad sin A

and if we divide both sides of this equation by 2 we obtain the area formula given in the exercise.

(b) Since the sine of an angle between 0◦ and 180◦ is ≤ 1, the formula in (a) implies that

A ≤ 1

4
(dc + cb + ba + ad)

and the inequality in the exercise follows because the right hand side is equal to 1

4
(a + c) (b + d).

Furthermore if any of the vertex angles 6 A, 6 B, 6 C, 6 D is NOT a right angle, then the sine of
that angle is strictly less than one and this implies the inequality must be strict.



Problems from Burton, p. 71

4. We need to solve the equations x + y = 10 and xy = 16 for x and y. Given that this is
a second degree system we can expect to find two solutions but for a meaningful solution of the
original physical problem both x and y must be positive.

The hint suggests using the formula

(x − y)2 = (x + y)2 − 4xy

and if we substitute the given equations into the right hand side we obtain the equation

(x − y)2 = 102 − 4 16 = 36 .

Thus we have x−y = ± 6. If x−y = +6, the solution we obtain is x = 8, y = 2, while if x−y = −6
we obtain the solution y = 8, x = 2. In particular, this means that we have a rectangle that is 8 by
2.

6. If we allow solutions that are arbitrary complex numbers, then the usual methods of college
algebra show that a system of two equations in x and y, with one linear and the other quadratic
(like xy = constant), has at most two solutions; this is true because the equations ax+ by = P and
xy = Q 6= 0 can be rewritten in the form

ax +
bQ

x
= P or ax2 − Px + bQ = 0 .

(a) In this case use the formula

(x − y)2 = (x + y)2 − 4xy

to find (x + y)2. Specifically, we have 36 = (x + y)2 − 64, which leads to x + y = ± 10. If we are
only looking for positive solutions to the system equations, then the last equation is solvable only
if x + y = 10. Since x − y = 6, it follows that x = 8 and y = 2 is the unique positive solution.

On the other hand, as noted above there is a second solution; in general, for the given type
of system one can read off the second solution from the first, for if x = a, y = b solves the given
system of equations then so does x = −b, y = −a (check this!). Therefore there are two real
solutions of the original system, and they are (x, y) = (8, 2) and (−2,−8).

(b) Use the same formula as before, but substitute the numerical values for this specific problem
to obtain the equation 16 = (x + y)2 − 84. Once again this leads to x + y = ± 10, and the positive
solution is (x, y) = (7, 3), with an additional real solution of (x, y) = (−3,−7).

(c) Once again use the formula, this time obtaining the equation (x− y)2 = 64− 60 = 4. Thus
we have x − y = ±2, so that the positive solution for this problem is (x, y) = (5, 3). In this case,
the system of equations is symmetric in x and y, so that if (x, y) = (a, b) solves the system then so
does (x, y) = (b, a), and hence the second solution is given by (3, 5).

13. (a) The hint on page 68 of the text seems wrong, and since one already knows x it
is reasonable to approach this by substituting the first equation into the second. This yields the
equation

30 y − (30 − y)2 = 500



which after expansion and simplification reduces to

y2 − 90 y + 1400 = 0 .

The roots of this equation are y = 70 and y = 20, and as noted before we are given x = 30.

(b) Here we follow the hint on page 68 of the text and subtract the square of the first equation
from twice the second. The square of the first equation has the form x2 + 2xy + y2 = 2500. If we
subtract this from 2x2 + 2 y2 + 2 (x − y)2 = 2800 we obtain the following:

3 (x − y)2 = x2 − 2xy + y2 + (x − y)2 = 300

This implies x − y = ± 10. Combining these with the original equation x + y = 50, we obtain the
solutions (x, y) = (30, 20) and (20, 30) depending upon the sign ±.

(c) In this problem we also follow the hint and substitute (x + y)2 = (x − y)2 + 4xy and
xy = 600 into the equation (x + y)2 + 60 (x − y) = 3100. This yields the following quadratic
equation in (x − y):

(x − y)2 + 60 (x − y) − 700 = 0

The roots of this equation are x − y = 10 and −70. If we substitute this into xy = 600 and solve
we obtain the solutions (x, y) = (30, 20) and (−20,−30) when x − y = 10, and when x − y = −70
we obtain the solutions (x, y) = (−35 − 5

√
73, 35 − 5

√
73) and (−35 + 5

√
73, 35 + 5

√
73).

SOLUTIONS TO ADDITIONAL EXERCISES

0. We shall first give a brief explanation of how one can work this sort of problem. The
idean is to take the base 10 numbers and write them as

W × 163 + X × 162 + Y × 16 + Z

where W, X, Y, Z are integers between 0 and 15. Given a number n in the range (so n < 2562 =
65, 536) the first step is to do long division and express n = 16p + Z. Next, we write p = 16q + Y
and q = 16r +X. By construction it will follow that q < 256, so that r is an integer between 0 and
15, and therefore r = W .

If we carry out the arithmetic in this case for n = 64206, when we divide by 16 we get an
integral quotient of p = 4012 with a remainder of Z = 14. At the next step, when we divide
p = 4012 by 16, we get an integral quotient of q = 250 with a remainder of Y = 12. Proceeding
to the third step, when we divide q = 250 by 16, we get an integral quotient of r = 15 with a
remainder of X = 12. But now we know that W = r = 15. Thus we have

(W,X, Y, Z) = (15, 10, 12, 14)

and if we convert this sequence into hexadecimal notation using A = 10, etc. the sequence can be
written in hexadecimal form as (F,A,C,E), so for this example the hidden word is FACE.

Using this method, one can show that the hexadecimal equivalents of 57069, 51966, 61453,
3499, 3071, and 4013 are respectively given by DEED, CAFE, F00D, DAB, BFF, and FAD.

1. For the first example, we have 165 = 1 × 122 + 1 × 12 + 9, so the dozenal expansion is
119.



For the second example, we have 343 = 2× 122 + 4× 12 + 7, so the dozenal expansion is 247.

For the third example, we have 666 = 4 × 122 + 7 × 12 + 6, so the dozenal expansion is 426.

For the fourth example, we have 998 = 6 × 122 + 11 × 12 + 2, so the dozenal expansion is
6#2.

In an additional example, we have 265 = 1 × 122 + 10 × 12 + 1, so the dozenal expansion is
1 ∗ 1.

2. We shall do these in order.

To find the sexagesimal form for 2/9 we have to write it as x/60. We can find x by the usual
method for solving proportion equations: 9x = 2 × 60 = 120 =⇒ x = 120/9. which translates to
x − 13 1

3
. Now 1/3 = 20/60, so this means we have

2

9
=

13

60
+

20

60 × 60
= 0; 13, 20 .

We approach 1/25 in the same way. The solution to the equation 1/25 = x/60 is x = 2 2

5
.

Since 2

5
= 24/60 we have

1

25
=

2

60
+

24

60 × 60
= 0; 2, 24 .

For the next two we have fractions that are clearly less than 1/60, so we should start with
60 × 60 = 3600 instead. Thus we want to start by solving 1/100 = x/3600. This has the solution
x = 36 and therefore the sexagesimal form is 0; 0, 36.

Finally, for the last one we begin by solving 1/125 = x/3600, and we find in this case that
x = 28 4

5
. Now 4/5 = 48/60 so we must have

1

125
=

28

60 × 60
+

48

60 × 60 × 60
= 0; 0; 28, 48 .

3. By definition this is equal to

1 +
24

60
+

51

60 × 60
+

10

60 × 60 × 60
= 1 +

24 × 3600 + 51 × 60 + 10

60 × 60 × 60
=

1 +
86400 + 3060 + 10

60 × 60 × 60
= 1 +

89470

216000
.

If we compute this number in decimals, we see that it is equal to 1.41421296296296296... and if we
compare this to

√
2 = 1.4142356... we see that this must have been an approximation to the square

root of 2 that is accurate to four (of our) decimal places.

4. Let’s start with L = 2. How many ways are there of writing a fraction r satisfying
0 < r < 1 as a sum of two unit fractions? If we have an equation of the form

r =
1

a
+

1

b

where for the sake of definitess we shall take a < b, then we have inequalities

r >
1

a
>

r

2



which imply that
1

r
< a <

2

r
.

Now there are only finitely many choices of integers a for which this inequality is true. For each
such a consider the remainder r − 1

a
. This also lies between 0 and 1. If it is a unit fraction of the

form 1/b, then we have an Egyptian fraction expansion

r =
1

a
+

1

b

but then again the remainder need not have this form. Regardless of whether or not it does, for
each choice of a there is at most one way of writing r in Egyptian form such that 1/a is one of the
terms. This means that there can only be finitely many Egyptian fraction expansions whose length
L is equal to 2.

To prove the result for all L using finite induction, we need to show that if the conclusion is
true for expansions of length L then it is true for expansions of length L + 1. So suppose we have
a value of L for which the conclusion is known to be true. If we are given an Egyptian expansion
of r with length L +1, one of the terms in this expansion, say 1/a, is larger than all the others. As
in the case L = 2, this means that

1

a
>

r

L + 1

for otherwise every one of the summands would be less than or equal to the right hand side, and
only one of the L + 1 terms could be equal to this. In such a situation the entire sum must be
strictly less than r. Armed with the above inequality for the largest term in the expansion, we
proceed as follows: Combining the displayed inequality with the basic relation 1

a
< r, we conclude

that
1

r
< a <

L + 1

r

and see that there are only finitely many possibilities for the largest term in an Egyptian expansion
of length L + 1. As before, for each such a consider the remainder r − 1

a
. This also lies between

0 and 1. By the hypothesis on expansions of length L, for each choice of a there are only finitely
many ways of expanding the remainder as an Egyptian fraction of length L.

Suppose now that we fix a and consider the finite collection of expansions

r =
1

a
+

L∑

j=1

1

nj

given by the previous paragraph. Every Egyptian fraction expansion of r containing the term 1/a
is in this list; in fact, there may be other non-Egyptian type expansions in the list because it is
possible that there is a summand 1

a
in the sum of L terms, but in any case we see that there are

only finitely many ways of writing r as an Egyptian fraction of length L+1 such that 1/a is one of
the terms. But there are only finitely many options for a, so this means there can only be finitely
many ways of expressing r by an Egyptian fraction expansion of length L + 1. This proves the
inductive step, and therefore the conclusion is true for all L ≥ 2.

5. We shall try to do the first few these using the Greedy Algorithm.

The largest unit fraction less than 2

11
can be found by looking for the first integer which is

greater than the reciprocal 11

2
= 5 1

2
. This integer is 6. Therefore the Greedy Algorithm gives 1

6



as the first term and proceeds to consider the remainder. But 2

11
− 1

6
= 1

66
so the we obtain the

expansion 2

11
= 1

6
+ 1

66
right away.

Next consider 3

11
. In this case the Greedy Algorithm gives 1

4
as the first term, and we compute

the remainder to be 3

11
− 1

4
= 1

44
, so that 3

11
= 1

4
+ 1

44
in this case.

Now consider 4

11
, in which case the Greedy Algorithm yields 1

3
as the first term and the

remainder is 1

33
. Thus we have 4

11
= 1

3
+ 1

33
in this case.

In the case of 5

11
, the Greedy Algorithm still yields 1

3
as the first term and the remainder is

4

33
. The latter is equal to 1

11
+ 1

33
, and thus we have 5

11
= 1

3
+ 1

11
+ 1

33
in this case.

For 3

11
, the Greedy Algorithm yields 1

2
as the first term and the remainder is 1

22
. Thus we

have 6

11
= 1

2
+ 1

22
in this case.

Turning to 7

11
a first application of the Greedy Algorithm yields 7

11
= 1

2
+ 3

22
. Rather than

proceed to apply the Greedy Algorithm directly to the remainder of 3

22
, let’s take the expansion we

had for 3

11
and multiply it by 1

2
to obtain 3

22
= 1

8
+ 1

88
. We then get the expansion 7

11
= 1

2
+ 1

8
+ 1

88

in this case.
We can dispose of the remaining cases similarly. For 8

11
, combine 8

11
= 1

2
+ 5

22
and 5

22
=

1

6
+ 1

22
+ 1

66
to obtain 8

11
= 1

2
+ 1

6
+ 1

22
+ 1

66
in this case.

Similarly, for 9

11
, combine 9

11
= 1

2
+ 7

22
and 7

22
= 1

4
+ 1

16
+ 1

176
to obtain 9

11
= 1

2
+ 1

4
+ 1

16
+ 1

176
.

Finally, for 10

11
, combine 10

11
= 1

2
+ 9

22
and 9

22
= 1

4
+ 1

8
+ 1

32
+ 1

352
to obtain 10

11
= 1

2
+ 1

4
+ 1

8
+ 1

32
+ 1

352
.

6. (a) If 0 < u < v, then 0 < u2 < v2 and 0 < u3 < v3. Adding these inequalities, we see
that 0 < u3 + u2 < v3 + v2. — Note that if we considered the function y3 − y2 instead, then one
can use calculus to show that if c > 0 then the equation y3 − y2 = c has a unique positive solution
such that y > 1 (one can use calculus to show that the function has a positive derivative and is
strictly increasing for y > 2

3
, and the value of the function is positive for y > 1).

(b) Using the change of variables we may write k3y3 + bk2y2 = c, which is equivalent to

y3 +
b

k
y2 =

c

k3

and we can make the coefficient of y2 equal to 1 if we take k = b. So the change of variables is
simply x = by.

(c) The change of variables is x = y − a, and thus the equation becomes

(y − a)3 + b(y − a)2 + c(y − a) + d = 0 .

If we expand everything in sight we obtain a monic third degree polynomial in y, and the coefficient
of y in this expression is given by 3a2 − 2ab + c, so the first degree term will vanish if a is a root of
3a2 − 2ab + c = 0. By the Quadratic Formula we have the following formula for a:

2b ±
√

4b2 − 12c

6
=

b ±
√

b2 − 3c

3

Note that these values of a are not necessarily real.

7. (i) Since supplementary angles have the same sines and all vertex angles are either
supplementary to 6 A or have the same measure as 6 A, it follows that sin A = sin B = sin C =
sin D. Thus the formula reduces to

A = 1

4
(a + c) (b + d) sin θ .

(ii) The formula says that the ratio of the actual area to the formula area is equal to sin θ.
For a 60◦ angle this sine is equal to 1

2

√
3, and therefore the ratio of the actual to formula area in

this case is also equal to 1

2

√
3. This is approximately 87 per cent of the value predicted by the

incorrect formula.


