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SOLUTIONS TO EXERCISES FROM math153exercises05.pdf

As usual, “Burton” refers to the Seventh Edition of the course text by Burton (the page
numbers for the Sixth Edition may be off slightly).

Problems from Burton, p. 231

4. More generally, consider the system of equations x2 + y2 = B and x + y = A where A
and B are (usually positive) integers. Since x2 + 2xy + y2 = (x + y)2 = A2, we can rewrite this
system as x + y = A and 2xy = A2 − B. If we are looking for positive solutions, then we might as
well restrict attention to cases where B < A2.

If we write C = 1

2
(A2 − B), then the system of equations implies that y = C/x and

x +
C

x
= A

so that x must satisfy the quadratic equation x2−Ax−C = 0. The Quadratic Formula implies that
there is a positive rational solution to this equation if and only if A2 + 4C = 3A2 − 2B is a perfect
square. This is the case if A = 20 and B = 208 as in Burton, for we then have 3A2−2B = 784 = 282;
more generally, one also obtains solutions if A = 20k and B = 208k2 for some positive integer k
(then the difference is (29k)2). For the choices of A = 20 and B = 208 in Burton, we can now solve
for x and y to conclude that x = 12 and y = 8.

In fact, there are many different ways of choosing integers A and B so that 3A2 − 2B is a
perfect square. Given an arbitrary positive integer A and some other positive integer D > A such
that (i) A + D is even, (ii) D2 < 3A2, the number 3A2 −D2 will always be an even integer (check
this!), and we can take B to be half of this difference. To show this is consistent with our previous
condition on B, we need to check that 3A2 − D2 = 2B < 2A2, but this follows because D > A, so
that A2 < D2 and 3A2 − D2 < 3A2 − A2 = 2A2.

13. By the theorem on pages 215–216 of Burton, the equation ax + by = c with integral
coefficients has integral solutions if and only if the greatest common divisor d for a also divides c.

(a) The greatest common divisor of 6 = 2 × 3 and 51 = 17 × 3 is 3, but 22 is not divisible by
3, so there is no integral solution for the equation.

(b) The greatest common divisor of 14 = 7× 2 and 33 = 3× 11 is 1, so the equation does have
integral solutions.

(c) The greatest common divisor of 14 = 7 × 2 and 35 = 7 × 5 is 7, and 91 = 13 × 7, so the
equation does have integral solutions.

14. (b) We shall first consider rational solutions to the equation 24x+138y = 138 and then
try to determine when these yield integral solutions; we also want to describe all such solutions in
a reasonable fashion.
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The greatest common divisor of 24 = 8 · 3 and 138 = 2 · 3 · 23 is 6, so in fact we can use the
Euclidean Algorithm to find some pair of integers a, b such that 24a + 138b = 6; an explicit choice
is given by (a, b) = (6,−1). Since 18 = 6 · e, we have the solution (x0, y0) = (18,−3) to the original
equation. We now need to see what can be said about the general solution. By subtraction of one
equation for another, we see that if (x, y) is an arbitrary solution then

24(x − x0) + 138(y − y0) = 0

which reduces to 4(x − x0) + 23(y − y0) = 0. The integral solutions to this equation are given by
all multiples of (23,−4), and therefore the general solution is given by x = x0 + 23k = 18 + 23k
and y = y0 − 4k = −3 − 4k.

15. (b) There cannot be any solutions such that x and y are both positive integers, for
x, y ≥ 1 imply 123x + 57y ≥ 123 + 57 = 180 > 30.

Problems from Burton, p. 237

1. (b) Use the hint and part (a). We have a polynomial x3 + bx2 + cx + d with a root r/s,
where r and s are relatively prime integers, and therefore s divides a = 1 and r divides d. This
means that ± r is a root of the equation, and by the previous sentence we know that r|d.

2. (b) By the results of the preceding exercise a rational root must have the form r/s where
r = ± 1 and s is equal to 2m for some m satisfying 0 ≤ m ≤ 5. In fact, 1

2
and − 1

4
are the roots of

this polynomial, and the latter has multiplicity 2 (in other words, (4x+1)2 divides the polynomial).

(d) Every rational root of this monic polynomial must be an integer and a divisors of the
constant term 24, and hence the only possibilities are ± 1, ± 2, ± 3, ± 4, ± 6, ± 8, ± 12, and ± 24.
Now the polynomial p(x) = x3 − 7x2 + 20x − 24 is negative for x < 0, so we can narrow down the
possibilities to the positive divisors of 24. Now p(x) > 0 if x ≥ 8 and this reduces the options to 1,
2, 3, 4 and 6. One can then check directly that 3 is the only root.

SOLUTIONS TO ADDITIONAL EXERCISES

1. The surface of revolution obtained from the wire is the sphere of radius 1. Therefore the
Pappus Centroid Theorem says that the area of the surface of the sphere is the length of the wire
times the circumference of a circle of radius y where y is the y-coordinate of the centroid of the
wire.

We know that the surface area is 4π and the length of the wire is 2π, and therefore by the
Pappus Centroid Theorem we have

4π = (2π) · (2π y)

and if we solve this for y we obtain y = 1/π.

Similarly, the solid of revolution obtained from the half disk is a sphere of radius 1 and therefore
its volume is 4

3
π. In this case the Pappus Centroid Theorem says that the volue of the solid sphere

is the area of the semicircular disk times the circumference of a circle of radius y where y is the
y-coordinate of the centroid of the half disk.

Since the area of the half disk is 1

2
π it follows that

4

3
π = ( 1

2
π) · (2π y)
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and if we solve this for y we obtain y = 4/3π.

Therefore the inequality
4

3π
>

1

π

implies that the centroid of the semicircular wire is closer to the center of the circle than the
centroid of the half disk.

2. If we rotate the half ellipse about the x-axis we obtain an ellipse whose principal axes
have lengths a, b and a in the x, y and z directions.

Before proceeding we note that the area formula for the ellipse also works if the lengths of the
major and minor axes are b and a respectively; in fact it would probably be better to say simply
that a and b are supposed to be the lengths of the principal axes.

The area of half the ellipse is 1

2
π a b, so by the Pappus Centroid Theorem we have

4

3
π a2 b =

(

1

2
π a b

)

· (2π y)

and if one solves this equation one finds that

y =
4 a

3π

is the y-coordinate for the centroid.

3. We first need to find the centroid of the triangle. General results, or integral calculus
applied to the specific example, imply that the centroid of the triangle in the problem is equal to
(2, c + 4

3
). The area of the triangle is equal to 1

2
· 3 · 4 = 6, and therefore by Pappus’ Theorem the

volume for the solid of revolution in the problem is 12π(c + 4

3
)2.

4. The most direct method of this problem is to consider the remainders left by the numbers
(7k + x)2 after division by 7, where x = 1, 2, 3, 4, 5, 6. Here is what we get:

(7k + 1)2 = 49k2 + 14k + 1 leaves a remainder of 1.
(7k + 2)2 = 49k2 + 28k + 4 leaves a remainder of 4.
(7k + 3)2 = 49k2 + 42k + 9 leaves a remainder of 2.
(7k + 4)2 = 49k2 + 56k + 16 leaves a remainder of 2.
(7k + 5)2 = 49k2 + 70k + 25 leaves a remainder of 4.
(7k + 6)2 = 49k2 + 84k + 36 leaves a remainder of 1.

Therefore the equation x2 = 7y + r has integral solutions if r = 1, 2, 4 but has no solutions if
r = 3, 5, 6. Furthermore, if r = 1 all solutions have the form 7y+1 or 7y+6, if if r = 2 all solutions
have the form 7y + 3 or 7y + 4, and if if r = 4 all solutions have the form 7y + 2 or 7y + 5.

5. We are going to need the following basic fact: Two lines with equations pix + qiy = ri,
where i = 1 or 2, are perpendicular if and only if p1q1 + p2q2 = 0. — This is true because
the directions of the two lines are determined by the vectors (qi,−pi), and these two vectors are
perpendicular if and only if p1q1 + p2q2 = 0.

We can check directly that (0, 0) and (−a,−b) are on the line with equation bx − ay = 0, and
(0, a) and (b, 0) are on the line with equation ax + by = ab. By the remarks in the first paragraph,
these lines are perpendicular since

(

b · a
)

+
(

(−a) · b
)

= 0 .
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