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SOLUTIONS TO EXERCISES FROM math153exercises09.pdf

As usual, “Burton” refers to the Seventh Edition of the course text by Burton (the page
numbers for the Sixth Edition may be off slightly).

Problems from Burton, p. 326

1. (b) Set y = x + 2, so that

2 = x3 + 6x2 + 3x = (x + 2)3 − 12x − 8 + 3x =

(x + 2)3 − 9(x + 2) + 18 − 8 = y3 − 9y + 10

and hence the original polynomial reduces to y3 − 9y +8 = 0. One root of this polynomial is y = 1,
and y3 − 9y + 8 = (y − 1)(y2 + y − 8), so the remaining roots are − 1

2
(1 ±

√
33). Using the inverse

substitution x = y − 2 we see that the roots of the original polynomial are −1 and − 1

2
(5 ±

√
33).

(d) We may rewrite the equation as x3 − 6x2 − 24x + 64 = 0. Now set y = x − 2, so that

0 = x3 − 6x2 − 24x + 64 = (x − 2)3 − 12x + 8 − 24x + 64 =

(x − 2)3 − 32(x − 2) = y3 − 32y .

It follows that 0 = y(y2 − 32), so that y = 0 or ± 4
√

2 and x = y + 2 = 2 or 2 ± 4
√

2.

3. Before working these exercises, we shall describe one method for computing the coeffi-
cients of y3 + py + q if we start with f(x) = x3 − bx2 + cx + d and set y = x − 1

3
b to eliminate the

second degree term.

CLAIM: q = f( 1

3
b) and p = f ′( 1

3
b).

These follow from the Taylor polynomial expansion of f(x) as a polynomial in (x − r), where
r = 1

3
b:

f(x) = f(r) + f ′(r)(x − r) +
f ′′(r)

2
(x − r)2 +

f ′′′(r)

6
(x − r)3

At the very least this is a good check on the algebraic i computations if one simply makes the
substitution x = y + 1

3
b and writes everything out as a polynomial in y.

(b) We shall try to use Cardan’s formula as printed on page 326. But first we need to rewrite
the given equation as y3 +py+ q = 0. We are given 0 = x3−6x2 +15x−18, and if we set y = x−2
this becomes y3 + 3y − 4 = 0, so that p = 3 and q = −4. Thus

q

2
= −2 ,

q2

4
= 4 ,

p3

27
= 1

, so the formula yields the root value

3

√

−2 +
√

4 − 1 +
3

√

−2 −
√

4 − 1 =
3

√

−2 +
√

3 +
3

√

−2 −
√

3 .
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(d) We shall try to use Cardan’s formula as printed on page 326. In our situation p = 9 and
q = 12. Thus

q

2
= 6 ,

q2

4
= 36 ,

p3

27
= 27

, so the formula yields the root value

3

√

6 +
√

36 − 27 +
3

√

6 −
√

36 − 27 =
3

√

6 +
√

9 +
3

√

6 −
√

9 =

3
√

6 + 3 + 3
√

6 − 3 =
3
√

9 +
3
√

3 .

(f) In this case the polynomial can be rewritten in the form x3 − 3x2 − 27x + 41 = 0, and if
we set y = x − 1 this transforms to y3 − 30y + 12 = 0, so that p = −30 and q = 12. Thus

q

2
= 6 ,

q2

4
= 36 ,

p3

27
= −1000

so the formula yields the root value

3

√

6 +
√

36 + 1000 +
3

√

6 −
√

36 + 1000 =
3

√

6 +
√

1036 +
3

√

6 −
√

1036 .

SOLUTIONS TO ADDITIONAL EXERCISES

1. (a) We should begin by observing that every monic cubic polynomial with real coefficients
factors into a product of three monic first degree polynomials over the complex numbers; this is
actually a special case of the so - called Fundamental Theorem of Algebra, which states that
every polynomial of positive degree with complex coefficients factors completely into a product first
degree polynomials, but we do not need the full force of this result (which will be discussed further
in Unit 13). — To verify the factorization for cubic polynomials, note first that if f(x) is a monic
cubic polynomial with real coefficients then limx→±∞ f(x) = ±∞, so that there is some M > 0
for which f(x) is negative when x < −M and f(x) is positive when x > M . By the Intermediate
Value Theorem from calculus, it follows that f(x) has at least one real root, which we shall call a.
Therefore by the Factor Theorem for polynomials f(x) can be factored as (x−a) g(x) where g(x) is
a quadratic polynomial with real coefficients. By the Quadratic Formula and the Factor Theorem
we can now write g(x) = (x − b)(x − c), where b, c are complex numbers. If we combine these, we
obtain the factorization f(x) = (x − a)(x − b)(x − c).

Given the factorization f(x) = (x−a)(x− b)(x− c) in the preceding sentence, we can compute
directly that

f(x) = x3 − (a + b + c)x2 + (linear term)

and therefore a + b + c = 0 if and only if the coefficient of the second degree term is zero.

(b) Rewrite the cubic equation in the form x3 − cx + d = 0. Now r and s are known to be
positive roots of this equation, and if t is the third root (counting multiple roots the appropriate
number of times) then by the first part of this exercise the sum r + s + t must be zero, so that
t = −(r + s). If we substitute this into the original equation we see that

0 =
(

−(r + s)
)3 −

(

−(r + s)
)

+ d = −(r + s)3 + (r + s) + d
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which means that r + s is a root of x3 − cx − d = 0, or equivalently that r + s solves the equation
x3 = cx + d.

2. As in the preceding problem if a is a root of x3 − cx − d = 0, then −a is a root of
x3−cx+d = 0, for if we evaluate the latter at −a, we obtain −a3+ca+d = −(a3−ca−d) = −0 = 0.
This leads to the following factorization:

x3 − cx + d = (x + a)

(

x2 −
ac + d

a2
x +

d

a

)

If we use the Quadratic Formula to find the roots of the second factor and make substitutions using
the equation a3 = ca + d, we obtain the expressions displayed in the exercise.

To solve the equation x3 + 3 = 8x using the preceding, we need to begin by finding a root for
x3 = 8x+3. Fortunately, we can see (say by trial and error) that x = 3 solves the second equation.
If we now substitute the values a = 3, c = 8 and d = 3 into the formula, we see that one root of
the original equation is −3 and the other roots of the original equation are 1

2
(3 ±

√
5).

3. Follow the hint and find the critical points of the polynomial p(x) = x3 − cx − d. If
0 = p′(x) = 3x2 − c then it follows that the critical points are x = ±

√

c/3, and by the Second
Derivative test the negative point xM is a relative maximum while the positive point is a relative
minimum. As indicated in the hint, we know that p(0) = −d < 0, and since

lim
x→+∞

p(x) lim
x→+∞

x3 ·
(

1 −
c

x2
−

d

x3

)

= lim
x→+∞

x3 = +∞

it follows from the Intermediate Value Theorem that p(x) has at least one positive real root.

To see that p(x) has two negative real roots, it is enough to show that p(xM ) > 0, for then we
can reason as in the previous paragraph to conclude that limx→−∞ p(x) = −∞, so that p as one
root r1 satisfying r1 < xM and another root r2 satisfying xM < r2 < 0. But we have

p(xM ) = p

(

−
√

c

3

)

=

−
( c

3

)3/2

+ c ·
( c

3

)1/2

− d =
2c

3
·
( c

3

)1/2

− d

which is positive if and only if the square of the first term is greater than the square of the second.
But the latter condition is precisely the assumption

( c

3

)3

>

(

d

2

)2

in the exercise.

4. The derivative of p(x) = x3 + cx − d is 3x2 + c, which is positive for all values of
x. Therefore it follows that the value of the polynomial is negative. If p(x) had some negative
root, then by the Mean Value Theorem implies that p′(y) would have to be negative for some
y < 0. Therefore p has no negative roots. On the other hand, since p is strictly increasing and
limx→∞ p(x) = +∞, it follows that p must have at least one positive root. But since p is always
positive it cannot have more than one such root (otherwise p′(y) = 0 for some y > 0).
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5. In this problem, it is much better if one disregards the hint and looks at the equation
cos 3θ = cos 120◦ = − 1

2
. Then as in history02.pdfwe see that − 1

2
= 4y3−3y, so that 8y3−6y+1 =

0.

Note. We can check that this is not rational by using the methods of history02.pdf to
check that the polynomial z3 − 3z + 1 has no rational roots; as in that document, r is a root of
this polynomial if and only if 2r is a root of the polynomial for cos 40◦, and once again by Gauss’
result the only possible rational roots for the latter would be ± 1, which cannot happen because
(±1)3 − 3(±1) + 1 must be an odd number.

6. We know that

cos 22 1

2

◦
=

√

1

2
+

√
2

4
, sin 22 1

2

◦
=

√

1

2
−

√
2

4

and if we square these we see that the sine and cosine of 22 1

2

◦
satisfy the quadratic equations

x2 =
1

2
±

√
2

4
.

Therefore it will suffice to find a quadratic polynomial which has both of the two numbers on the
right as roots. But one can do this easily, for the quadratic polynomial must be y2 − y +(1/8) = 0,
so that the original numbers are roots of x4 − x2 + (1/8) = 0.

7. This uses the same idea as the preceding exercise. The number 3 −
√

2 is a root of the
polynomial equation y2 − 6y + 5 = 0, so if x2 = 3 −

√
2 then x4 − 6x2 − 5 = 0.
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