1.B. Base $\mathbf{6 0}$ expansions of unit fractions

One can compute the Babylonian expansions for unit fractions of the form $1 / n$ in very much the same way as one computes decimal expansions. We shall begin by reviewing the process for base 10. A proof that this gives the decimal expansion for $1 / n$ is given on page 105 of the following online document:
http://math.ucr.edu/~res/math144/setsnotes5.pdf
The coefficients a_{n} in the decimal expansion

$$
\frac{1}{n}=0 . a_{1} a_{2} a_{3} \ldots
$$

nay be determined recursively as follows: By long division we may write

$$
10=a_{1} n+b_{1}
$$

where b_{1} is an integer satisfying $0 \leq b_{1}<n$. Note that since n is a positive integer it follows that $a_{1} \leq a_{1} n \leq 10$. To find the next coefficient we proceed as in long division, bringing down the term b_{1} and finding a_{2} and b_{2} such that

$$
10 b_{1}=a_{2} n+b_{2}
$$

where now b_{2} is an integer satisfying $0 \leq b_{2}<n$. Once again we have

$$
a_{2} n \leq 10 b_{1}<10 n
$$

which implies that $0 \leq a_{2}<10$. Using b_{2} we may find a_{3} and b_{3} similarly, and so forth. If n evenly divides some power of 10 , then eventually one obtains a remainder $b_{k}=0$, and at that point all subsequent terms a_{j} and b_{j} will also be equal to zero.

The same procedure works for other bases, and in particular for base 60 . Let's see exactly what happens if we apply it to a simple example:
Problem. Express 1/48 in Babylonian-type notation.
SOLUTION. In this case the first step is

$$
60=48 a_{1}+b_{1}
$$

and the conditions imply that $a_{1}=1$ and $b_{1}=12$. At the next stage we have

$$
720=60 \cdot 12=48 \cdot 15+0
$$

This means that the first term in the expansion is 1 and the second is 15 , or in the modern representation we have the sexagesimal fraction $0 ; 1,15$ as our answer.

Let's verify this:

$$
\frac{1}{60}+\frac{15}{3600}=\frac{75}{3600}=\frac{1}{48}
$$

In analogy with the base 10 case, this process always terminates after a finite number of steps if n evenly divides some power or 60 , or equivalently if the only prime divisors of n are contained in the set $\{2,3,5\}$.

Another example. What is the expansion for $1 / 1000$?
ANSWER. In this case the algorithm yields the expression $0 ; 0,3,36$ for the fraction in question. At the first step one obtains $a_{1}=0$ and $b_{1}=60$, while at the second step one obtains $a_{2}=3$ and $b_{2}=600$, and at the third step one obtains $a_{3}=36$ and $b_{3}=0$.

The results on page 105 of the document
http://math.ucr.edu/~res/math144/setsnotes5.pdf
also show that if $0<p<q$ then the coefficients a_{k} in the decimal expansion

$$
\frac{p}{q}=0 . a_{1} a_{2} a_{3} \ldots
$$

are eventually periodic in the sense that one can find positive integers m and Q such that $k \geq m$ implies $a_{k}=a_{k+Q}$, and conversely if we are given integral coefficients a_{j} which are eventually periodic and satisfy $0 \leq a_{j}<10$, then the decimal expansion

$$
\sum_{j \geq 1} \frac{a_{j}}{10^{j}}
$$

is a rational number. The argument generalizes to base N expansions in which 10 is replaced by an arbitrary integer $N>1$ (as do all the proofs on pages 103-109 of that document). In particular, this is true for $N=60$. However, as indicated in history01.pdf all base 60 expansions in Babylonian mathematics were truncated at the third term and hence such patterns were most likely of no interest at the time.

