## 3.B. Geometric proportions and the Condition of Eudoxus

One important motivation for the Condition of Eudoxus was to consider geometric ratios involving incommensurable quantities; in modern language, these are lengths |WX| and $|\mathbf{Y Z}|$ such that the quotient $|\mathbf{W X}| /|\mathbf{Y Z}|$ is not a rational number. A basic problem of this nature is depicted in the figure below: In this picture the lines BD and CE are assumed to be parallel, and one wants to prove that

$$
|\mathrm{AB}| /|\mathrm{AC}|=|\mathrm{AD}| /|\mathrm{AE}| .
$$

If the left hand side is a rational number p/q, then standard manipulations of ratios show that

$$
|A B| / p=|A C| / q
$$

and ideas discussed in the main notes for this unit then imply that

$$
|A D| / p=|A E| / q
$$

which then quickly yields $|\mathbf{A D}| /|\mathbf{A E}|=\mathbf{p} / \mathbf{q}=|\mathbf{A B}| /|\mathbf{A C}|$. Of course this breaks down completely if the ratio $|\mathbf{A B}| /|\mathbf{A C}|$ is an irrational number like sqrt(2), and we need the Condition of Eudoxus to handle such cases.

Here is a formal statement of Eudoxus' criterion for two ratios to be equal:
Two ratios of (positive real) numbers a/b and c/d are equal if and only if for each pair of positive integers $m$ and $n$ we have the following:
$\mathrm{ma}<\mathrm{nb}$ implies $\mathrm{mc}<\mathrm{nd}$
$\mathrm{ma}>\mathrm{nb}$ implies $\mathrm{mc}>\mathrm{nd}$

The derivation of this criterion is based upon a fundamentally important rational density property of the real numbers: If we are given real numbers $\mathbf{x}$ and $\mathbf{y}$ such that $\mathbf{x}<$ $\mathbf{y}$, then there is a rational number $\mathbf{r}$ such that $\mathbf{x}<\mathbf{r}<\mathbf{y}$. Further details about this implication are contained in the first supplement to this unit (see either history03a.pdf or histm003a.doc, which are different formats of the same document).

## APPLICATION OF THE CONDITION OF EUDOXUS TO PROPORTIONALITY

QUESTIONS. Suppose now that we have triangles ABD and ACE as in the figure below, where $\mathbf{B D}$ is parallel to $\mathbf{C E}$; as in the figure we assume that the rays [AB and [AC are the same and likewise that the rays $[\mathrm{AD}$ and $[\mathrm{AE}$ are the same. Let $\mathbf{a}=|\mathbf{A B}|, \mathbf{b}=$ $|A C|, \mathbf{c}=|A D|$ and $\mathbf{d}=|A E|$. We want to use the Condition of Eudoxus to conclude that $\mathbf{a} / \mathbf{b}=\mathbf{c} / \mathbf{d}$.


Suppose first that $\mathbf{m}$ and $\mathbf{n}$ are positive integers such that $\mathbf{m a}<\mathbf{n b}$. We want to show that $\mathbf{m c}<\mathbf{n d}$. We can find points $\mathbf{P}$ and $\mathbf{Q}$ on the ray [ $\mathbf{A B}=[\mathbf{A C}$ such that $|\mathbf{A P}|=\mathbf{m a}$ and $|\mathbf{A Q}|=\mathbf{n b}$. Since $\mathbf{m a}<\mathbf{n b}$, it follows that $\mathbf{P}$ is between $\mathbf{A}$ and $\mathbf{Q}$. One can then find unique parallel lines to $\mathbf{B D}$ and $\mathbf{C E}$ through $\mathbf{P}$ and $\mathbf{Q}$. These lines will meet the line $\mathbf{A D}=\mathbf{A E}$ in two points $\mathbf{R}$ and $\mathbf{S}$. A proper formulation of concepts like betweenness, the two sides of a line, and so on will imply that $\mathbf{S}$ and $\mathbf{R}$ also lie on the ray [ $\mathbf{A D}=[\mathbf{A E}$ and that $\mathbf{R}$ is between $\mathbf{A}$ and $\mathbf{S}$.

The proportionality results in the commensurable case now imply that

$$
|\mathbf{A R}| /|\mathbf{A D}|=\mathbf{m}=|\mathbf{A P}| /|\mathbf{A B}| \text { and }
$$

$$
|\mathrm{AS}| /|\mathrm{AE}|=\mathrm{n}=|\mathbf{A Q}| /|\mathbf{A C}| .
$$

Therefore $|\mathbf{A R}|=\mathbf{m c}$ and $|\mathbf{A S}|=\mathbf{n d}$ also hold. By observations in the previous paragraph we know that $|\mathbf{A R}|<|\mathbf{A S}|$, and thus we may use the preceding sentences to rewrite this as mc < nd. To summarize, we have now shown that ma < nb implies mc < nd.

If we have $\mathbf{m a}<\mathbf{n b}$, then we may proceed similarly. The argument is basically the same except that $\mathbf{Q}$ will be between $\mathbf{A}$ and $\mathbf{P}$, and this will in turn imply that $\mathbf{S}$ is between $\mathbf{A}$ and R. Following the same line of reasoning in this case, one concludes that ma>nb implies $\mathbf{m c}>\mathbf{n d}$. Therefore we have established both parts of the Condition of Eudoxus, and consequently we have shown that $\mathbf{a} / \mathbf{b}=\mathbf{c} / \mathbf{d}$; by definition of the numbers $\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}$ in this equation, the desired proportionality equation $|\mathbf{A B}| /|\mathbf{A C}|=|\mathbf{A D}| /|\mathbf{A E}|$ is an immediate consequence.

