8.A. Loxodromes

We have noted that a loxodrome (or rhumb line) is a curve on the sphere for which the compass direction is constant and that under the Mercator projection a loxodrome corresponds to a straight line. The picture below shows a loxodrome from a point to the North Pole with a compass direction of $\boldsymbol{\beta}$ degrees measured clockwise from due north.

http://upload.wikimedia.org/wikipedia/commons/d/d6/Loxodrome.png
The shortest curve to the North Pole is along a longitude (or meridian), so in this case it is clear that the loxodrome is far from the shortest distance between two points on sphere in many cases. Here is a map showing the difference between paths from New York to London along a great circle route and a loxodrome:

(Source: http://www.ncgia.ucsb.edu/education/curricula/giscc/units/u014/figures/figure06.html)

Parametric equations for a loxodrome

As in the first picture of the preceding page, we shall let $\boldsymbol{\beta}$ denote the compass direction of a loxodrome, and we shall assume that the longitude at the starting point is equal to $\boldsymbol{\lambda}_{\boldsymbol{0}}$. If we let $\boldsymbol{m}=\boldsymbol{\operatorname { c o t }}(\boldsymbol{\beta})$, then the following formulas describe a loxodrome parametrically in Cartesian coordinates as a function of the longitude λ :

$$
\begin{gathered}
x=r \cos (\lambda) / \cosh \left(m\left(\lambda-\lambda_{0}\right)\right), \\
y=r \sin (\lambda) / \cosh \left(m\left(\lambda-\lambda_{0}\right)\right), \\
z=r \tanh \left(m\left(\lambda-\lambda_{0}\right)\right) .
\end{gathered}
$$

See http://en.wikipedia.org/wiki/Rhumb line for details of the derivation and further information.

