
14.E.  Calculus and problems in algebra 
 

 
 
Ever since the time of the Greeks, if not earlier, mathematicians have realized that one branch 
of the subject is often extremely helpful in studying another.  This is particularly apparent in the 
Greeks’ systematic use of geometry to deal with irrational numbers and to solve equations that 
we now view as basically algebraic; for example, several books in Euclid’s  Elements  include 
large amounts of material devoted to formulating algebra geometrically, and there are very 
lengthy treatments of issues related to irrational numbers.  Conversely, the algebraic formulation 
of coordinate geometry in the 17th century showed that algebraic methods made many basic 
geometrical concepts and problems much easier to handle.  In the opposite direction, during the 
18th century several mathematicians began to notice ways in which the methods and results 
from calculus yielded fresh approaches to questions in algebra, which in some cases included 
strong new insights into basic questions in algebraic subjects like number theory and solutions 
of polynomial equations.   In particular, input from calculus is fundamental to the proofs of 
Fermat’s Last Theorem which were obtained near the end of the 20th century.   We shall simply 
discuss a few easily stated examples to illustrate the applications of calculus to questions which 
can be stated in purely algebraic terms.   

 
Bernoulli numbers 

 
One of the most basic results on power series is that the infinite series for the exponential 
function has the form 
 

 
 

so that the coefficients for the various powers of  x  are given by a number – theoretic function; 

namely,  n !  =  1 · … ·  n.    The methods and results of calculus quickly led to the discovery of 
other important numerical sequences, and the Bernoulli numbers were an early example.  As 
noted in the document 
 

http://math.ucr.edu/~res/math153/bernoulli-numbers.pdf 
 

this sequence first appeared in the early 17th century, and many of its properties were studied 
independently by James Bernoulli and Seki; in particular, James Bernoulli noticed the formula  
 

 
 

in which the (Bernoulli) numbers  Bm  are defined using the following power series expansion: 
 

 
 

Here is a table of the first few Bernoulli numbers: 
 



 
 

(Source: http://www.makli.com/bernoulli-numbers-002031/) 

 
Many properties of these numbers are described in the previously cited article, which is a 
cleaned up version of  http://numbers.computation.free.fr/Constants/constants.html.  For our 
purposes the most important point is the connection between these numbers and problems 
related to calculus. 
 

Here is one easily described context in which Bernoulli numbers appear.  We have already 

mentioned Euler’s discovery that the sum of all terms 1/k
2
  equals  ππππ

2
/6; in fact, if we let  

 

 
then Euler’s result fits into the following more general pattern: 
 

 
 

Additional information about Bernoulli numbers is available from the following online references: 
 

http://en.wikipedia.org/wiki/Bernoulli_number 
 

http://mathworld.wolfram.com/BernoulliNumber.html 
 

http://www.bernoulli.org/ 
 



Stirling’s Formula.   A related example deals with the factorial function n! ; as noted above, 

the latter is the product of the first  n  positive integers (and by definition  0!  =  1).  Simple 

computations show that this function grows very rapidly as  n  increases, and one natural 
question is to understand how the growth rate relates to that of other functions.  During the first 
half of the 18th century one such estimate was obtained using ideas from calculus; this result is 
known as Stirling’s Formula:   
 

 
 

This formula was discovered by J. Stirling (1667 – 1754) and (except for the constant factor 

involving the square root of 2ππππ) independently by A. De Moivre (1692 – 1770); there is a 
discussion of the interaction between Sterling and De Moivre on pages 477 – 478 of Burton.  
Here are some references for further information: 

 

http://en.wikipedia.org/wiki/Stirling%27s_approximation 
 

http://www.math.uconn.edu/~kconrad/blurbs/analysis/stirling.pdf 

 
We have already noted that Euler played an important role in applying the methods of calculus 
to number theory.  In particular, he discovered the following attractive and fundamentally 

important infinite product identity (with an assumption that  s  >  1): 
 

 
 

Before discussing one important application of formulas like this, we shall first discuss an 
important application of methods from calculus to answer a basic question about finding roots of 
polynomials:   
 
The Fundamental Theorem of Algebra.    This is yet another important algebraic application of 
ideas from calculus which answers old questions about roots of polynomials; despite the result’s 
name, all proofs of it use the continuity properties of the real numbers in some fashion 
and thus are intrinsically non – algebraic.   On the other hand, the statement of the result is 
entirely algebraic:  
 

EVERY  nonconstant   single – variable polynomial with complex coefficients 
has at least one complex root.  Equivalently, all non – constant polynomials 
with complex coefficients are products of linear polynomials. 

 

As noted in  http://en.wikipedia.org/wiki/Fundamental_theorem_of_algebra  and page 548 of 
Burton, such a result had been conjectured in the 17th century, and there were numerous  
attempts to prove it during the 18th century, and the first indisputably complete proof was given 
by J. R. Argand (1768 – 1822) in 1806. 
 
Primes in an arithmetic progression.  Perhaps the most unexpected applications of calculus 
to algebraic involve the distribution of prime numbers.    Euclid’s proof shows that there are 
infinitely many odd primes, and clearly one can split the odd primes into two subsets depending 

upon whether they leave a remainder of  1 or  3  when divided by  4.   Some textbooks in 
elementary number theory or abstract algebra contain an exercise asking for a proof that the 
second of these classes is infinite, and it is natural to ask more generally about the number of 
primes in an arbitrary arithmetic progression.  The following result, which is based upon 



methods from calculus and provides an optimally strong answer to the question, is due to J. P. 
G. Lejeune Dirichlet (generally abbreviated to Dirichlet, 1805 –1859; the pronunciation is either 
deer – i – clay  or  deer – i – shlay):  

 

Given two positive relatively prime integers a and d, the arithmetic progression 

a + nd, where n  ≥  0,  contains infinitely many primes. 
 

This and many other key connections between number theory and calculus can be traced back 
to Euler’s infinite product identity which was described above.   Further information on Dirichlet’s 
result and related matters can be found on pages 559 – 560 of Burton and the online article 
http://en.wikipedia.org/wiki/Dirichlet%27s_theorem_on_arithmetic_progressions.   As noted there, 
an “elementary” proof not using input from calculus was given much later by A. Selberg (1917 – 
2007).   In a related direction, during the first decade of the 21st century B. Green and T. Tao 
proved that the sequence of primes contains arbitrarily long arithmetic progressions (see  
http://en.wikipedia.org/wiki/Green%E2%80%93Tao_theorem).  Many other questions involving the 
distribution of primes have been studied using methods from calculus, and the study of such 
problems has played an important role in mathematics during the past two centuries.  Here are 
some references: 

 

http://en.wikipedia.org/wiki/Prime_number_theorem 
 

http://mathworld.wolfram.com/PrimeNumberTheorem.html 
 

http://en.wikipedia.org/wiki/Riemann_hypothesis 
 

 
Degrees of separation and unification in mathematics 

 
In modern mathematics there are many contexts in which ideas from one branch of the subject 
often turn out to have important and far – reaching consequences for apparently unrelated 
problems.   One can speculate whether or not this reflects the “six degrees of separation” 
theories which have been studied and written about in popular culture over the past few 
decades, but in any case they suggest a fundamental unity in mathematics which underlies the 
increasing number of different branches of the subject.   
 

Here are some references which discuss evidence for and against the notion of “six degrees of 
separation.”   While it can be interesting or useful to speculate on this theory in particular 
examples, in each specific case it is also important to make sure that the supposed relations 
between two connected objects are actually significant.   

 

http://whatis.techtarget.com/definition/0,,sid9_gci932596,00.html 
 

http://message.snopes.com/showthread.php?t=24972 
 

http://en.wikipedia.org/wiki/Six_degrees_of_separation 
 

http://en.wikipedia.org/wiki/Erd%C5%91s_number 
 

http://www.oakland.edu/enp/ 

 
 


