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Assignments for Unit III

Working the exercises listed below is strongly recommended.

The following exercises are taken from Munkres:

Munkres, Section 23: 2–5, 9, 12∗ assuming Y is closed

Munkres, Section 25: 1b, 9b, 10ab

Munkres, Section 26: 3, 7, 8

Munkres, Section 27: 2abcd

The following references are to the file gentopexercises2014.pdf in the course directory.

Additional exercises for Section III.1: 1

Additional exercises for Section III.3: 5

Additional exercises for Section III.4: 1–3, 5–7

Additional exercises for Section III.5: 1, 3, 5

Reading assignments from solutions to exercises

Another strong recommendation is to read through the solutions to the following problems
in the files math205Asolutions03.pdf; some additional comments on the significance of these
exercises are also given below.

Munkres, Section 24: 10c

Additional exercises for Section III.1: 1, 5

Additional exercises for Section III.3: 9, 15

Additional exercises for Section III.4: 4, 8

Additional exercises for Section III.5: 2, 4



Comments

This unit begins with generalized versions of material from undergraduate real variables
courses, but it quickly moves to concepts and results which generally do not appear in such courses.
In many cases the statements or proofs are less straightforward than material in earlier course,
much of this more sophisticated material material is fundamental to subsequent courses in the 205
sequence.

In most cases, the solutions assigned for reading are meant to illustrate certain points. For ex-
ample, Additional Exercise III.1.5 is an example of what can happen if one weakens the hypotheses
slightly (in this case, replacing a continuous function by a semicontinuous one); in this case, one
ends up with a conclusion which is weaker but still nontrivial (namely, a lower semicontinuous func-
tion on a compact space takes a minimum value) but the proof is more than just a straightforward
modification of the proof that continuous functions on compact spaces take maximum and mini-
mum values. In contrast, Additional Exercise III.3.5 is an example of how one proves a plausible
statement (in this case, density of the complement) for certain basic examples of subspaces.

Additional Exercise III.4.4 involves checking whether statements about topological spaces are
true or false, developing the depth and breadth of knowledge needed to make educated guesses
about truth or falsehood, and applying one’s knowledge to either prove the truth of a statement or
to come up with counterexamples. Similarly, Exercise 24.10c tests one’s understanding of concepts
with more complicated examples involving components, quasicomponents and arc components, and
it also provides an example of working with nontrivial examples. The point of Additional Exercise
III.4.8 is more sophisticated; one’s intuition might suggest that the statement in the exercise is false
(it is hard to visualize curves joining two points in R2

−Q2), but if one follows the argument in the
solution it becomes necessary to concede that the statement is actually true. Additional Exercise
III.5.2 is also meant as practice in finding counterexamples.

Finally, Additional Exercise III.5.4 is meant as practice following a moderately complicated
argument which proves an extremely fundamental fact (for the circle, this can be shown as in
Additional Exercise III.5.3, and for the 2-dimensional sphere one can establish this using spherical
coordinates θ and φ where θ is between 0 and 2π and φ is between 0 and π).

Choosing a topology for an infinite product

Suppose that we are given an infinite product of topological spaces
∏

α
Xα. In Section II.4

we gave one reason for choosing the product topology (whose basis is all products of open sets∏
α

Uα such that Uα = Xα for all but finitely many α) instead of the more easily defined box
topology (whose basis is all products of open sets

∏
α

Uα); namely, it is the smallest topology for
which the coordinate projection mappings are continuous. As noted in Example 2 on page 117 of
Munkres, one cannot conclude that a function into a product with the box topology is continuous
if its coordinate projections are continuous.

There are two other respects in which the product topology behaves better than the box
topology. Namely, the product of a family of compact spaces will always be compact in the product
topology, and the product of a family of connected spaces will always be connected in the product
topology. Both of these fail for the box topology. For compactness, one can take an infinite product
of copies of the unit interval [0, 1]; if B denotes this space with the box topology and P denotes
this space with the product topology, then the identity map from B to P is continuous and by
Theorem 19.4 in Munkres (see p. 116) both spaces are Hausdorff. If B were compact, then the



identity mapping would be a homeomorphism, contradicting the fact that the box topology is
strictly larger than the product topology. For connectedness, one can take a countably infinite
product of copies of R and proceed as follows: Let U be the set of all points (x1, x2, · · ·) ∈ R∞

such that limn→∞ xn = 0. For each point (x1, · · ·) in U the box open subset
∏

n
(xn −

1

n
, xn + 1

n
)

is contained in U and hence U is open in the box topology. On the other hand, for each point
(x1, · · ·) in X −U the box open subset

∏
n

(xn −
1

n
, xn + 1

n
) is contained in X −U and hence X −U

is also open in the box topology. Since U and X − U are both nonempty, it follows that X is not
connected.

An additional reference

The following book is another reference for the material discussed in the subheading Strong

arcwise connectedness in Section III.5:

S.B. Nadler. Continuum theory. An introduction. Monographs and Textbooks in Pure
and Applied Mathematics Vol. 158. Marcel Dekker, New York , 1992.


