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Assignments for Unit VI

Working the exercises listed below is strongly recommended.

The following exercises are taken from Munkres:

Munkres, Section 30: 9 (first part only), 10, 13, 14

Munkres, Section 33: 2a (for metric spaces), 6a, 8

Munkres, Section 38: 2Λ, 3 (just give a necessary condition on the topology of the space)

Munkres, Section 40: 2

The following references are to the file gentopexercises2014.pdf in the course directory.

Additional exercises for Section VI.1: 1, 3, 4

Additional exercises for Section VI.3: 1, 3, 4

Additional exercises for Section VI.4: 1, 2, 5, 7, 9

Additional exercises for Section VI.5: 3

Reading assignments from solutions to exercises

Another strong recommendation is to read through the solutions to the following problems
in the files math205Asolutions05.pdf; some additional comments on the significance of these
exercises are also given below.

Munkres, Section 33: 6

Additional exercises for Section VI.1: 2

Additional exercises for Section VI.2: 1

Additional exercises for Section VI.5: 1

The statement and proof of Corollary VI.5.9A (on page 2 of this document) should also be
read and understood.



Comments

This unit deals with more advanced properties of topological spaces. In Section VI.1 several
important countability properties for subspaces of R

n are studied abstractly, and one of the main
results in Section VI.2 uses these ideas to prove important properties of compact metric spaces.

The material on separation properties and metrization theorems was particularly important
when there was great interest in finding necessary and sufficient conditions for a topological space
to be metrizable, but currently most topics in Sections VI.3 and VI.5 are less central than the
material in the other sections of the unit. The main things to take away from Sections VI.3 and
VI.5 are the statements of the basic definitions, the proof that compact T2 spaces are T4, the fact
that all the separation properties are true in metric spaces, and the statements (but not the proofs)
of the basic metrization theorems. The document embeddings.pdf contains additional material
related to these sections.

Significance of metrization theorems. Frequently it is useful to have purely topological criteria
for knowing that a topological space is metrizable, for metrizable spaces have many good properties
(first countability, separation properties, every closed subset is a countable intersection of open
subsets, etc.). However, the usefulness of such a result depends on how easy it is to check that
the criteria for metrization are satisfied. The Urysohn Metrization Theorem, which gives necessary
and sufficient conditions for metrizability of a second countable space, is particulary good in this
respect for at least two reasons: The conditions in the theorem is fairly simple to state and easy to
check, and many important examples of topological spaces are second countable.

One consequence of the results in this unit is the following purely topological characterization
of compact metrizable spaces. The proof brings together many of the main ideas in Unit VI.

COROLLARY VI.5.9A. A compact topological space X is metrizable if and only if it is T2

and second countable.

Proof. (⇒) If X is metrizable it is T2, and by Proposition VI.1.6 we know that a compact
metric space is second countable.

(⇐) If X is compact and T2, then by Theorem VI.3.3 we know that X is also T3 (in fact, it
is also T4). Since X is also second countable, the Urysohn Metrization Theorem (VI.5.9) implies
that X is metrizable.

In contrast, the more general metrization theorems for arbitrary topological spaces have proven
to be less useful, largely because the criteria are generally difficult to check for many examples.

Reading assignments. As usual, the solutions assigned for reading are meant to illustrate
certain points. Exercise 33.6 in Munkres has appeared on qualifying examinations in the past, and
the result itself illustrates how the methods of the course can be applied to verify a general statement
which may seem to be “intuitively obvious” and can be checked directly for many basic examples.
Additional Exercise VI.1.2 is meant to illustrate the relative strength of the second countability
property for topological spaces that are not homeomorphic to metric spaces; in particular, this
example shows that a result which is true for separable metric spaces is not necessarily true for
more general topological spaces. The conclusion for Additional Exercise VI.2.1 might be needed in
205C, but in any case it plays an important role in topics closely related to that course. Finally,
Additional Exercise VI.5.1 analyzes spaces of continuous functions on open subsets of R

n, in which
the natural topology involves uniform convergence on compact subsets; this topological structure
plays an important role in many studies of function families on noncompact spaces.



Exercises and readings on topological groups

Topological groups are discussed in Appendix A to gentop-notes.pdf. Although this topic
will not be covered in the present course, it plays important roles in many (arguably, nearly all)
branches of pure mathematics, and it is extremely worthwhile to learn at least a little about this
subject. Specific reading recommendations include Appendix A up to, but not including, the
subheading Analysis on page 124. Also suggested are working Supplementary Exercise 1 at the end
of Section 22 in Munkres, reading the solutions to Supplementary Exercises 5 and 6 from the same
set, working Exercise 31.8 in Munkres and Additional Exercise A.0, and reading the solutions to
Additional Exercises A.1 – A.4.

Supplementary Exercise 5 looks at the topological structure on the cosets associated to a sub-
group of a topological group, Supplementary Exercise 6 is an example, and Additional Exercises A.1
– A.4 describe important examples of compact Hausdorff topological groups of invertible matrices.

Paracompactness

Although the definition of a paracompact space is relatively complicated, the underlying con-
cept turns out to be extremely important in many areas of geometry, topology and analysis (compare
the comments on page 252 of Munkres). One reason for this is the existence of families of functions
called partitions of unity, which often allow one to construct a continuous function with certain
good properties out of functions which are a priori only known to exist locally. The following
example, which is related to Theorem 41.8 in Munkres, illustrates the sorts of things which can be
done:

PROPOSITION. Let X be a metric space, and let W be an open neighborhood of X × {0} in

X × R. Then there is a continuous function δ : X → (0,∞) such that the open set

{ (x, t) ∈ X × R | |t| < δ(x) }

is contained in W .

In this example, near each x ∈ X one has a constant εx and an open neighborhood W of
(x, 0) such that W × (−ε, ε) ⊂ U , so locally one has a function δ with the right properties (in fact,
a constant function). The idea of paracompactness is that it gives a method for piecing together
these functions which are good locally into a function which is good globally.

Proof. This is included mainly for the sake of completeness, and it is not part of the course
material to be covered on examinations.

For each x ∈ X there is an open neighborhood Vx of x and a positive number ε(x) such
that Vx × Nε(x)(0) ⊂ W . By A. H. Stone’s Theorem (Munkres, Theorem 41.4) the space X is
paracompact, and hence the open covering {Vx | x ∈ X} has an open locally finite refinement
U = {Uα}; by construction we can find positive constants ε(α) such that Vα × Nε(α)(0) ⊂ W .

Let {φα} be a partition of unity dominated by U ; such a family of functions exists by Munkres,
Theorem 41.7. Next, let

δ(x) =
∑

α

ε(α) · φα(x) .

Formally this is an infinite sum, but by the local finteness of U each point x ∈ X has a neighborhood
in which only finitely many summands are nonzero, so the formula defines a continuous function.



Furthermore, since
∑

α φα = 1 and each φα takes nonnegative values everywhere, it follows that
for each x there is some β such that φβ(x) > 0, and from this it follows that δ(x) > 0 for all x ∈ X.

Finally, we claim that if |t| < δ(x) then (x, t) ∈ W . Given x ∈ X, let α1, · · · , αk be
such that x ∈ Uα only if α = αj for some j. If α∗ is chosen such that ε(α∗) is the largest of
the positive constants ε(α1), · · · , ε(αk), then δ(x) < ε(α∗) and hence |t| < δ(x) implies that
(x, t) ∈ Uα∗ × Nε(α∗)(0) ⊂ W . Therefore |t| < δ(x) implies (x, t) ∈ W , as required.

In some cases it is even possible to construct partitions of unity with certain additional prop-
erties; for example, if X is an open subset of R

n it is possible to construct the functions φα so that
they have continuous partial derivatives of all orders. Such objects play an important role in parts
of 205C.


