UPDATED GENERAL INFORMATION — OCTOBER 24, 2014

Added files for Unit \mathbf{V}

Three files have been added to the course directory. Two of them, moebius.pdf and moebius2.pdf, fill in the details for a construction which was outlined in the lectures; namely, showing that the quotient space construction for the Möbius strip

$$M = [0,1] \times [-\frac{1}{3},\frac{1}{3}]/\mathcal{R}$$

where \mathcal{R} is the equivalence relation generated by $(0,t) \sim (1,-t)$, is homeomorphic to a subspace of \mathbb{R}^3 which looks like the standard picture of this space. The first document defines an explicit continuous mapping from M to \mathbb{R}^3 which is 1–1; by Theorem III.1.8 this map must map Mhomeomorphically to its image because M is compact (it is the continuous image of a compact space) and \mathbb{R}^3 is Hausdorff. The second document contains a verification that the mapping from M to \mathbb{R}^3 is in fact 1–1.

The third document, scissors+paste.pdf, discusses a problem which generalizes the Scissors and Paste Problem in Section V.2. For the sake of convenience, we recall that if $\{X_{\alpha} \mid \alpha \in A\}$ is an indexed family of spaces and $Y = \bigcup_{\alpha} X_{\alpha}$ then the disjoint union space

$$\prod_{\alpha} X_{\alpha}$$

is the set of all $(p, \alpha) \in Y \times A$ such that $p \in X_{\alpha}$, and the topology on this space is given by all subsets $\coprod_{\alpha} U_{\alpha}$ such that U_{α} is open in X_{α} for every $\alpha \in A$. It follows that each $X_{\alpha} \times \{\alpha\}$ is an open and closed subset of the disjoint union, and this subset is homeomorphic to X_{α} via the map sending (p, α) to p.

Here is the statement considered in scissors+paste.pdf:

Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in A\}$ be an open covering of a topological space X, and define an equivalence relation \mathcal{R} on the disjoint union space $\coprod_{\alpha} U_{\alpha}$ such that $(x, \alpha) \mathcal{R}(y, \beta)$ if and only if x = y and this point lies in $U_{\alpha} \cap U_{\beta}$. Then the quotient space

$$\left(\prod_{lpha} U_{lpha}\right)/\mathcal{R}$$

is homeomorphic to X.

As indicated in the lectures, none of this material will be covered on the first in-class examination.