
More metrics on cartesian products

If (Xi,di) are metric spaces for 1 ≤ i ≤ n, then in Section II.4 of the lecture notes we defined
three metrics on

∏

i Xi whose underlying topologies are the product topology. The purpose of this
note is to explain how one can interpolate a continuous family of metrics between these examples;
for each such metric, the underlying topology will be the product topology.

Throughout this discussion p ≥ 1 will denote a fixed real number.

Let x, y ∈
∏

i Xi, express them in terms of coordinates as (x1, · · · , xn) and (y1, · · · , yn)
respectively, and define dp from (

∏

i Xi) × (
∏

i Xi) to R as follows:

d〈p〉(x, y) =
(

∑

i
di(xi, yi)

p
)1/p

The cases where p = 1 or 2 were considered in the lecture notes.

It follows immediately that d〈p〉 satisfies all the properties for a metric except perhaps the
fundamentally important Triangle Inequality. The latter is in fact a consequence of the following
basic result:

Minkowski’s Inequality. Suppose that we have u, v ∈ R
n and we write these vectors in coordi-

nates as (u1, · · · , un) and (v1, · · · , vn) respectively. Then we have

(

∑

i
|ui + vi|

p
)1/p

≤
(

∑

i
|ui|

p
)1/p

+
(

∑

i
|vi|

p
)1/p

.

Here are some references for a proof of Minkowski’s Inequality:

W. Rudin, Real and Complex Analysis. (Third Edition. Mc-Graw-Hill Series in Higher
Mathematics.) McGraw-Hill, Boston-etc., 1987. ISBN: 0-07-054234-1.

http://www.planetmath.org/encyclopedia/MikowskiInequality.html

The incorrect spelling “Mikowski” needed to reach the planetmath link should be noted; the latter
also gives further links to the proof of the inequality, the statement and proof of the closely related
Hölder Inequality, and a statement and proof of the Young Inequality which can be used to prove
Hólder’s Inequality; in fact, one generally begins by proving Hölder’s Inequality (either as in the
planetmath links or by some other means) and then derives Minkowski’s inequality from Hölder’s
Inequality.

Hölder’s Inequality. Suppose that we have u, v ∈ R
n as above with p > 1, and that we choose

q > 1 such that
1

q
+

1

p
= 1 .

Then we have
(

∑

i
|ui · vi|

)

≤
(

∑

i
|ui|

p
)1/p

·
(

∑

i
|vi|

q
)1/q

.

The planetmath references also contain a sequence of links to Hölder’s inequality and related
facts which can be used bo give a self-contained proof of the two given inequalities and some other
basic results.
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Since each of the metrics d〈p〉 for p = 1, 2,∞ defines the product topology, it is natural to
speculate that the same holds for all choices of p, and in fact this is true.

PROPOSITION. For each p ≥ 1, the topology determined by the metric d〈p〉 is the product

topology. Furthermore, the identity map from (
∏

i Xi,d
〈α〉) to (

∏

i Xi,d
〈β〉) is uniformly continuous

for all choices of α, β such that 1 ≤ α, β ≤ ∞.

Proof. It suffices to prove the assertion in the second sentence, and the latter reduces to the
special case where one of α, β is ∞; if we know the result in such cases, we can retrieve the general
case using the uniform continuity of the identity mappings

(

∏

i

Xi,d
〈p〉

)

−→

(

∏

i

Xi,d
〈∞〉

)

−→

(

∏

i

Xi,d
〈r〉

)

and the fact that a composite of uniformly continuous maps is uniformly continuous.

The uniform continuity statements are direct consequences of the following inequalities for
nonnegative real numbers ui for 1 ≤ i ≤ n:

maxi { ui } ≤

(

∑

i

u
p
i

)1/p

≤ n · maxi { ui }

One can then apply the argument in the notes to show that the identity maps

(

∏

i

Xi,d
〈∞〉

)

−→

(

∏

i

Xi,d
〈p〉

)

−→

(

∏

i

Xi,d
〈∞〉

)

are uniformly continuous (and in fact the δ corresponding to a given ε can be read off explicitly
from the inequalities!), and of course all composites of maps from this diagram are also uniformly
continuous.

The limiting case

The following result is the motivation for setting d∞ equal to the maximum distance between
coordinates:

PROPOSITION. In the setting above we have

d〈∞〉 = lim
p→∞

d〈p〉 .

Proof. This reduces immediately to proving the following result: If u ∈ R
n as above then

maxi { |ui| } = lim
p→∞

(

∑

i

|ui|
p

)1/p

.

Let M denote the expression on the left hand side, and for each p > 1 let Yp denote the
value of the expression whose limit we wish to find. Clearly M ≤ Yp for all p because M is
obtained by deleting all but one summand from Yp. However, since |ui| ≤ M for all i, we also have
Yp ≤ (n · Mp)1/p = M · n1/p. Now the limit of the right hand side as p → ∞ is equal to M , and
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thus we have sandwiched Yp between two expressions, one of which is equal to M and the other of
which has a limit equal to M . It follows that the limit of Yp is also equal to M , which is exactly
the claim in the proposition.

If one graphs the set of all points in R
2 whose p-distance from the origin is equal to 1 for

various values of p ≥ 1, the result is a collection of closed curves centered at the origin such that
the area enclosed by the curve increases with p and the limit of these curves is the boundary of the
square whose vertices are the elements of the set {±1} × {±1}.

Refined estimates

It is straightforward to check that the solid unit disk in R
2 with respect to the d〈1〉 metric is

the solid square region whose vertices are (±1, 0) and (0,±1), while the solid unit disks in R
2 with

respect to the d〈2〉 and d〈∞〉 metrics are (respectively) the usual round unit disk and the solid square
[−1, 1]× [−1, 1]. In particular, if α < β then the unit disk with respect to d〈β〉 strictly contains the
unit disk with respect to d〈α〉. Likewise, the corresponding unit disks in R

3 are the solid octahedral
region with vertices (±1, 0, 0), (0,±1, 0) and (0, 0,±1), and the solid cube [−1, 1]3, with each set
properly contained in the next. There are analogous statements in all higher (finite) dimensions.
We shall generalize these observations to arbitrary metrics d〈α〉 and d〈β〉 where 1 ≤ α < β ≤ ∞.

THEOREM. Let α and β satisfy 1 ≤ α < β ≤ ∞, and suppose that n ≥ 2. Then the solid unit
disk in R

n with respect to the metric d〈β〉 strictly contains the analogous disk with respect to the
metric d〈α〉.

Of course, if n = 1 then all the analogous disks are the same.

Proof. As usual, let | · · · |α and | · · · |β denote the α- and β-norms on R
n. The first step is to

show that if β > α and |x|α ≤ 1 then we also have |x|β ≤ 1.

Since |x|p only depends upon the absolute values of the coordinates of x, it suffices to consider
the case where all the coordinates of x are nonnegative. Furthermore, since |x|α = |x|β if x is a
multiple of a unit vector, it will suffice to prove the result when at least two of the coordinates of x

are nonzero, in which case it follows that all the (absolute values of the) coordinates are all strictly
less than 1.

CLAIM: If x is as above and |x|α ≤ r ≤ 1 then for all β > α we have |x|β < r.

To prove the claim, consider the function

Nx(p) =
(

x
p
1 + · · · + x

p
k

)(1/p)

where p ≥ 1. For all p ≥ 1 we have

N ′
x(p) =

1

p

(

n
∑

i=1

x
p
i

)

1−p

p

·
∑

xj 6=0

(loge xj)x
p
j

and the right hand side is negative because (i) the values x
p
i are all nonnegative but less than

1, (ii) at least two of the numbers xi are positive, so that the associated logarithmic coefficients
are negative and the terms x

p
i are positive. Therefore by the Mean Value Theorem we know that

Nx is a strictly decreasing function for p ≥ 1. This immediately proves the claim if β < ∞. In
the remaining case where β = ∞ we know that |x|∞ = limp→∞ Nx(p) and since Nx is strictly
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decreasing it follow sthat the limit value is strictly less than |x|p for all p such that 1 ≤ p ≤ ∞.
This completes the proof of the claim.

In particular, the preceding discussion shows that if |x|α ≤ 1 then |x|β ≤ 1 so that the unit disk
with respect to d〈α〉 is contained in the unit disk with respect to d〈β〉. To prove the statement about
strict containment, let x be the vector whose first two coordinates are 2−α and whose remaining
coordinates are zero, so that |x|α = 1. If we let b = |x|β , then b > 0 and by the preceding
discussion we know that b < 1. The basic properties of norms now imply that |b−1 x|β = 1 while
|b−1 x|α = b−1 > 1, and therefore it follows that b x lies in the unit disk with respect to d〈β〉 but
not in the unit disk with respect to d〈α〉, proving that the unit disk with respect to the first metric
strictly contains the unit disk with respect to the second.

A figure illustrating the first quadrant portions of some unit disks with respect to d〈p〉 metrics
appears in the file dpunitdisks.pdf.

The preceding results for the d〈p〉 metrics on R
n generalize immediately to other products. It

will be convenient to introduce a the following property for metric spaces.

Definition. Let ε > 0. A metric space (X,d) is said to be ε-weakly saturated at x ∈ X if for
all δ ∈ [0, ε] there is a point y ∈ X such that d(x, y) = δ.

Clearly a normed vector space determines a weakly saturated metric with respect to every
point, but a set with the discrete metric does not. In practice, many interesting examples of spaces
satisfy weak saturation conditions. For example, if the underlying topological space X is connected
in the sense of Unit III and contains more than one point, then for each x ∈ X one can find some
ε(x) > 0 such that x is ε(x)-weakly saturated at x; a proof is given at the end of this document.

THEOREM. Suppose that we are given metric spaces (Xi,di) for 1 ≤ i ≤ n, let 1 ≤ α < β ≤ ∞,
and let dα and dβ be the associated product metrics on

∏

i Xi. Then for all x and y in the product
we have the relation

d〈α〉(x, y) ≤ r ≤ 1 =⇒ d〈β〉(x, y) ≤ r .

Furthermore, if x = (x1, · · · , xn) and for each i the metric for Xi is 1-weakly saturated at xi, then
there are points x, y ∈

∏

i Xi such that d〈β〉(x, y) = 1 but d〈α〉(x, y) > 1.

Proof. The displayed relation follows immediately from the preceding theorem. To prove the
second, it suffices to find a point y = (y1, · · · , yn) such that d1(x1, y1) = d2(x2, y2) = 2−β and
yi = xi for all i ≥ 3 (this is an empty condition if n = 2). Then the argument in the previous
theorem implies that the β-distance from x to y is 1 but the α-distance is strictly greater than 1.

Saturation and connectedness

We shall conclude by giving simple conditions under which a metric satisfies saturation hy-
potheses at each point. This discussion involves the concept of connectedness, which is introduced
in Unit III.

The main facts about connected spaces that we shall need are (i) a subset C of the real line
is connected if and only if for all x, y ∈ C such that x < y and all z such that x < z < y we have
z ∈ C, (ii) if f : X → Y is continuous and X is connected then f [X] is also connected. Given a
metric space (X,d), we shall also need and use the basic continuity properties of functions defined
in terms of d.

PROPOSITION. Let (X,d) be a connected metric space consisting of more than one point.
(i) For each x ∈ X there is some εx > 0 such that X is εx-weakly saturated at x.
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(ii) If the metric d is unbounded (in other words, its image is not a bounded subset of R),
then for all x ∈ X and all ε > 0 the metric space (X,d) is ε-weakly saturated at x.

Proof. (i) Let x ∈ X be arbitrary, and let y ∈ X be such that y 6= x. Take εx = d(x, y) > 0, and
let h : X → R be the (continuous) function h(u) = d(x, u). Then we know that h[X] is a connected
subset of R. Since h(x) = 0 and h(y) = εx, by connectedness we know that h[X] must contain the
entire interval 0, εx].

(ii) By the preceding argument it suffices to show that if ε > 0 and x ∈ X, then there is some
point y ∈ X such that d(x, y) ≥ ε. — Suppose this is false for some particular x ∈ X and ε > 0, so
that d(x, y) < ε for all y. The unboundedness assertion for the metric implies that there are points
u, v ∈ X such that d(u, v) > 2ε. By previously derived consequences of the Triangle Inequality we
then have

d(x, u) ≥ d(u, v) − d(x, v) ≥ 2ε − ε = ε

which contradicts our hypothesis that d(x,w) < ε for all w ∈ X. This yields the statement at the
beginning of the paragraph.
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