
TANGENTS TO AN ELLPISE THROUGH AN EXTERNAL POINT

We have noted that the concept of geometrical transformation was implicit in the
classical Greek idea of proof by superposition. Our purpose here is to show how such
transformations can yield relatively simple proofs of some geometrical results.

BACKGROUND MATERIAL. As the title suggests, we are interested in questions involving
tangent vectors to ellipses in R2. As such, we shall use the standard description of tangents
in terms of differential calculus, and we shall also use the representability of ellipses and
other curves by parametric equations. The starting point is the following observation,
which can be proved by direct calculation:

PROPOSITION. Let y(t) be a parametrized curve defined on an open interval (c, d)
with values in R2, and assume that y(t) has a continuous derivative y′(t). Suppose further

that we are given an affine transformation of R2 defined by F (x) = Ax + b, where A is

an invertible 2 × 2 matrix and b ∈ R2, and let z be the curve z(t) = F
(

y(t)
)

. Then we

have z′(t) = Ay′(t).

Verification is left as an exercise to the reader; one can use the standard coordinate
forms of vectors and matrices in which vectors are viewed as 2 × 1 matrices, the vector w

has coordinates (w1, w2), and the linear transformation associated to A sends this vector
to the one with coordinates

(

a1,1w1 + a1,2w2, a2,1w1 + a2,2w2

)

.

Here is a statement of the main result.

THEOREM. Let Γ ⊂ R2 be an ellipse, and let p ∈ R2 be an external point. Then there

are two tangents to Γ which pass through p.

Our proof will use the results in Section V.2 (pp. 80–83) of the following online linear
algebra notes:

http://math.ucr.edu/∼res/math132/linalgnotes.pdf

In particular, these results imply that if Γ is an arbitrary ellipse in the coordinate
plane, then there is an affine transformation (in fact, a rigid motion or Galilean transfor-
mation) F such that F maps Γ to a standard ellipse Γ1 of the form

x2

a2
+

y2

b2
= 1

where a, b > 0. We have not been precise about the notion of external point for Γ, but
one way to describing the external points of this ellipse is to say that they are the points
which map under F to the obvious external set of Γ1 consisting of all points for which

x2

a2
+

y2

b2
> 1 .
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By the proposition, it is enough to prove the theorem for ellipses defined by the standard
equations as above.

One can take this another step further and reduce the proof to the case where Γ1 is
the standard unit circle Γ0 defined by x2 + y2 = 1, for if G is the affine transformation
such that

G(w1, w2) = G(w1/a1, w2/a2)

then G maps the previously described Γ1 to Γ0 and sends external points for the curve Γ1

into external points for Γ0.

Thus we have reduced everything to a special case of a basic result in classical Eu-
clidean geometry: If we are given a circle C and an external point p, then there are exactly

two tangents from p to C.

For the sake of completeness, here is a proof using vectors. It requires to pieces of
background information:

(1) Suppose we are given ∆ABC in the plane such that the midpoint D of [AC] is

equidistant from the three vertices. Then 6 ABC is a right angle.

(2) If C is a circle and L is a line through the point p ∈ C, then L is tangent to C
at p if and only if L is perpendicular to the line joining p to the center of C.

Both of these can be proven using vectors. In the first case, one starts with the
equations D = 1

2
(A + C) and |D − A|2 = |D − B|2 = |D − C|2 and uses them to show

that the dot product 〈A − B, C − B〉 is equal to zero. In the second case, one has a
parametrization x(t) such that |x|2 = r2 for some fixed r > 0, and simple differentiation
shows that 2x(t) · x′(t) = 0, so that direction vectors for the two lines — which are x′(t)
for the tangent and x(t) for the line through the center — must be perpendicular.

It follows (as in a classical Greek geometrical construction) that if the circle |x|2 = r2

meets the circle |x−p|2 = |p|2 in two points q1 and q2, then the lines pxi are perpendicular
to the lines 0xi by (1) above, and hence by (2) the lines pxi are tangent to the circle at
the points xi. To complete the proof, we need to show that the system of equations

|w − p|2 = |p|2 , |w|2 = r2

has two solutions. Our assumption on p means that |p|2 > r2, and hence if we write p =
(a, b) then after some algebraic manipulation we obtain a system of two scalar equations:

w2

1
+ w2

2
= r2, 2(a w1 + b w2) = r2

We can solve the second equation for one of w1 or w2 in terms of the other coordinate
because a and b are not both zero, and if we substitute the resulting expression into the
first equation we obtain a quadratic equation in one of the coordinates. The condition
|p|2 = a2 + b2 > r2 implies that this equation has two real roots, and it follows that there
are exactly two points which lie on the two circles.
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