Embeddings into product spaces

The main result is a generalization of Theorem 34.2 on pages $217-218$ of Munkres, and the argument is similar to the proof of "Step 2" on pages 215-216 of Munkres.

Definition. Let Y be a topological space, and let $f_{\alpha}: Y \rightarrow X_{\alpha}$ be an indexed family of continuous mappings with indexing set A. If $\pi_{\beta}: \prod_{\alpha} Y_{\alpha} \rightarrow Y_{\beta}$ is projection onto the β-factor, then the basic properties of products imply there is a unique continuous mapping $F: Y \rightarrow \prod_{\alpha} X_{\alpha}$ such that $\pi_{\alpha}{ }^{\circ} F=f_{\alpha}$ for all α. The main result gives sufficient conditions for F to map Y homeomorphically onto its image.

THEOREM. In the setting above, the mapping F maps Y homeomorphically onto $F[Y]$ provided the following hold:
(i) The family of functions f_{α} separates points: If u and v are distinct points of Y then there exists some f_{α} such that $f_{\alpha}(u) \neq f_{\alpha}(v)$.
(ii) The family of functions f_{α} separates points and closed subsets: Given $x \in Y$ and a closed subset $A \subset Y$ such that $x \notin A$, there is some f_{α} such that $f_{\alpha}(x) \notin \overline{f_{\alpha}[A]}$.

Note that if X is $\mathbf{T}_{\mathbf{1}}$ then the second condition implies the first.
Proof. First of all, condition (i) is equivalent to the condition that the function F is $1-1$, for the condition means that if $u \neq v$ then $f_{\alpha}(u)=\pi_{\alpha}{ }^{\circ} F(u)$ and $f_{\alpha}(v)=\pi_{\alpha}{ }^{\circ} F(v)$ are unequal for some indexing variable α.

Therefore, if the first condition holds, then the map F defines a 1-1 continuous mapping onto $F[Y]$. We need to show that if the second condition also holds then F sends open subsets of Y to open subsets of $F[Y]$. It will suffice to show that for each open subset $V \subset Y$ and $x \in V$ there is an open neighborhood W of $F(x)$ in $\prod_{\alpha} X_{\alpha}$ such that $W \cap F[Y] \subset F[V]$.

We know that $x \notin X-V$ and $X-V$ is closed, so there is some α such that $f_{\alpha}(x) \notin \overline{f_{\alpha}[X-V]}$; we shall denote the closed subset in this expression by E.

Let $W=\pi_{\alpha}^{-1}\left[Y_{\alpha}-E\right]$; since E is closed in Y_{α} it follows that W is open. Clearly $U=W \cap F[Y]$ is open in $F[Y]$; we shall show that $z=F(x) \in U$ and $U \subset F[V]$. Since $x \in V$ is arbitrary, the usual argument shows that $F[V]$ is a union of open subsets in $F[Y]$ and hence is open in $F[Y]$, which is what we wanted to prove.

To show that $z \in U=W \cap F[Y]$, first note that $z=F(x)$ implies $z \in F[Y]$, and $F(z) \in W$ because $\pi_{\alpha}{ }^{\circ} F(z)=f_{\alpha}(z) \notin E$, which means that $F(z) \in W=\pi_{\alpha}^{-1}\left[Y_{\alpha}-E\right]$.

Suppose now that $y \in U=W \cap F[Y]$; it follows that $y=F\left(y^{\prime}\right)$ for some $y^{\prime} \in Y$. Now

$$
\pi_{\alpha}(y)=\pi_{\alpha} \circ F\left(y^{\prime}\right)=f_{\alpha}\left(y^{\prime}\right)
$$

and since $y \in W$ implies that $\pi_{\alpha}(y) \notin Y_{\alpha}-E$, it follows that $f_{\alpha}\left(y^{\prime}\right) \notin Y_{\alpha}-E$. Since f_{α} maps $X-V$ into E and $f_{\alpha}\left(y^{\prime}\right) \notin E$, it follows that y^{\prime} must lie in V. The latter in turn implies that $y=F\left(y^{\prime}\right)$ must lie in $F[V]$. This completes the proof that $U=W \cap F[Y]$ is contained in $F[V]$, and as noted above it also completes the proof of the theorem.

