Embeddings into product spaces

The main result is a generalization of Theorem 34.2 on pages 217–218 of Munkres, and the argument is similar to the proof of "Step 2" on pages 215–216 of Munkres.

Definition. Let Y be a topological space, and let $f_{\alpha}: Y \to X_{\alpha}$ be an indexed family of continuous mappings with indexing set A. If $\pi_{\beta}: \prod_{\alpha} Y_{\alpha} \to Y_{\beta}$ is projection onto the β -factor, then the basic properties of products imply there is a unique continuous mapping $F: Y \to \prod_{\alpha} X_{\alpha}$ such that $\pi_{\alpha} \circ F = f_{\alpha}$ for all α . The main result gives sufficient conditions for F to map Y homeomorphically onto its image.

THEOREM. In the setting above, the mapping F maps Y homeomorphically onto F[Y] provided the following hold:

(i) The family of functions f_{α} separates points: If u and v are distinct points of Y then there exists some f_{α} such that $f_{\alpha}(u) \neq f_{\alpha}(v)$.

(*ii*) The family of functions f_{α} separates points and closed subsets: Given $x \in Y$ and a closed subset $A \subset Y$ such that $x \notin A$, there is some f_{α} such that $f_{\alpha}(x) \notin \overline{f_{\alpha}[A]}$.

Note that if X is \mathbf{T}_1 then the second condition implies the first.

Proof. First of all, condition (i) is equivalent to the condition that the function F is 1–1, for the condition means that if $u \neq v$ then $f_{\alpha}(u) = \pi_{\alpha} \circ F(u)$ and $f_{\alpha}(v) = \pi_{\alpha} \circ F(v)$ are unequal for some indexing variable α .

Therefore, if the first condition holds, then the map F defines a 1–1 continuous mapping onto F[Y]. We need to show that if the second condition also holds then F sends open subsets of Y to open subsets of F[Y]. It will suffice to show that for each open subset $V \subset Y$ and $x \in V$ there is an open neighborhood W of F(x) in $\prod_{\alpha} X_{\alpha}$ such that $W \cap F[Y] \subset F[V]$.

We know that $x \notin X - V$ and X - V is closed, so there is some α such that $f_{\alpha}(x) \notin \overline{f_{\alpha}[X - V]}$; we shall denote the closed subset in this expression by E.

Let $W = \pi_{\alpha}^{-1}[Y_{\alpha} - E]$; since E is closed in Y_{α} it follows that W is open. Clearly $U = W \cap F[Y]$ is open in F[Y]; we shall show that $z = F(x) \in U$ and $U \subset F[V]$. Since $x \in V$ is arbitrary, the usual argument shows that F[V] is a union of open subsets in F[Y] and hence is open in F[Y], which is what we wanted to prove.

To show that $z \in U = W \cap F[Y]$, first note that z = F(x) implies $z \in F[Y]$, and $F(z) \in W$ because $\pi_{\alpha} \circ F(z) = f_{\alpha}(z) \notin E$, which means that $F(z) \in W = \pi_{\alpha}^{-1}[Y_{\alpha} - E]$.

Suppose now that $y \in U = W \cap F[Y]$; it follows that y = F(y') for some $y' \in Y$. Now

$$\pi_{\alpha}(y) = \pi_{\alpha} \circ F(y') = f_{\alpha}(y')$$

and since $y \in W$ implies that $\pi_{\alpha}(y) \notin Y_{\alpha} - E$, it follows that $f_{\alpha}(y') \notin Y_{\alpha} - E$. Since f_{α} maps X - V into E and $f_{\alpha}(y') \notin E$, it follows that y' must lie in V. The latter in turn implies that y = F(y') must lie in F[V]. This completes the proof that $U = W \cap F[Y]$ is contained in F[V], and as noted above it also completes the proof of the theorem.