Mathematics 205A, Fall 2014, Examination 1

Answer Key

1. [20 points] Suppose that $\left(X_{1}, \mathbf{T}_{1}\right)$ and $\left(X_{2}, \mathbf{T}_{2}\right)$ are topological spaces, and let \mathbf{U} be a topology on $X_{1} \times X_{2}$ such that the two coordinate projections $p_{1}: X_{1} \times X_{2} \rightarrow X_{1}$ and $p_{2}: X_{1} \times X_{2} \rightarrow X_{2}$ are continuous. Prove that \mathbf{U} contains the product topology on $X_{1} \times X_{2}$. [Hint: Why is it enough to prove that \mathbf{U} contains a base for the product topology?]

SOLUTION

If we are given a base for a topology \mathbf{P}, then every subset in \mathbf{P} is a union of sets in \mathbf{P}. Since \mathbf{U} is closed under unions, it contains all of \mathbf{P} if it contains a base for \mathbf{P}.

Now specialize to the case where \mathbf{P} is the product topology, and take the base consisting of product sets $V_{1} \times V_{2}$ where V_{i} is open in X_{i} for $i=1,2$. By continuity the sets $p_{i}^{-1}\left[V_{i}\right]$ are \mathbf{U}-open. Since \mathbf{U} is closed under intersections it follows that the intersection of these sets is also in \mathbf{U}. But

$$
p_{1}^{-1}\left[V_{1}\right] \cap p_{2}^{-1}\left[V_{2}\right]=V_{1} \times V_{2}
$$

and therefore the continuity of p_{1} and p_{2} implies that $V_{1} \times V_{2}$ is in \mathbf{U}. By the remarks in the preceding paragraph, it follows that all of \mathbf{P} is contained in \mathbf{U}.
2. [25 points] Let X be a compact topological space, let Y be a topological space which satisfies the Hausdorff Separation Property, and let $f: X \rightarrow Y$ be a continuous mapping which is $1-1$ and onto. Prove that f is a homeomorphism.

SOLUTION

A continuous and 1-1 onto map from one space to another is a homeomorphism if and only if it sends closed subsets to closed subsets. Therefore it is enough to show that f has this property. But $F \subset X$ closed and X compact implies F is compact, which implies that $f[F]$ is compact, which implies that $f[F]$ is a closed subset of the Hausdorff space Y.■
3. [30 points] (a) Let X be set with the finitary topology Fin (a proper subset is closed if and only if it is finite). Under what conditions on X is (X, Fin) connected? [Caution: The correct answer involves 2 or 3 mutually exclusive possibilities!]
(b) Let $A \subset \mathbb{R}$, let $X \subset \mathbb{R}^{2}$ be the open upper half plane consisting of all (x, y) such that $y>0$, and let $C_{A}=X \cup A \times\{0\}$. Explain why C_{A} is a connected subset of \mathbb{R}^{2}. [Hint: What is the closure of X in \mathbb{R}^{2} ?]
(c) Let $V \subset \mathbb{R}^{2}$ be the complement of the x-axis ($=$ all points whose second coordinates are nonzero). Is V connected? Is V locally connected? Give brief explanations for your answers.

SOLUTION

(a) The finitary and discrete topologies are equal for finite sets, so the finitary topology on a finite set is connected if and only if the set has at most one point. - If X is infinite, then X must be connected, for if $X=A \cup B$ where A and B are closed subsets, then at least one of them must be infinite. Since X itself is the only closed subset which is infinite, it is clear that A and B cannot be disjoint. -
(b) More generally, if $E \subset Y$ is connected and $E \subset B \subset \bar{E}$, then B is connected. Applying this to the example, the open square X is connected because it is the product of two open intervals, and the closure of X in \mathbb{R}^{2} is just the solid square $[0,1] \times[0,1]$. Therefore we have $X \subset C_{A} \subset \bar{X}$, which means that C_{A} is connected.

ALTERNATE ARGUMENT. In fact, C_{A} is arcwise connected. The space X itself is arcwise connected because it is a product of arcwise connected spaces, and every point in $A \times\{0\}$ can be joined to a point in X by a vertical line segment and this segment is contained in C_{A}. .
(c) V is locally connected because it is open in the locally connected space \mathbb{R}^{2}, and it is not connected because the upper and lower half planes, defined by $y>0$ and $y<0$ respectively, are open and closed subsets of V.
4. [25 points] (a) Let (X, \mathbf{T}) be a topological space, let Y be a set, and let $f: X \rightarrow Y$ be an onto function. Define the quotient topology $f_{*} \mathbf{T}$ on Y determined by (X, \mathbf{T}) and f, and explain why the map $f:(X, \mathbf{T}) \rightarrow\left(Y, f_{*} \mathbf{T}\right)$ is continuous.
(b) Let $(X, \mathbf{T}), Y$ and f be as in (a), and suppose that \mathbf{U} is a topology on Y such that $f:(X, \mathbf{T}) \rightarrow(Y, \mathbf{U})$ is continuous and open. Prove that $\mathbf{U}=f_{*} \mathbf{T}$. [Hint: Show that a set is U-open if and only if it is $f_{*} \mathbf{T}$-open. - Caution: In general the map $f:(X, \mathbf{T}) \rightarrow\left(Y, f_{*} \mathbf{T}\right)$ is not necessarily open.]

SOLUTION

(a) The quotient topology on Y consists of all sets $V \subset Y$ such that $f^{-1}[V]$ is open in X.
(b) Every U-open set is $f_{*} \mathbf{T}$-open because if V is \mathbf{U}-open then $f^{-1}[V]$ is \mathbf{T}-open by continuity. Conversely, suppose that $f^{-1}[V]$ is \mathbf{T}-open. To see that V is U-open, note that the open mapping condition on f implies that $f\left[f^{-1}[V]\right]$ is \mathbf{U}-open. Since f is onto we have $V=f\left[f^{-1}[V]\right]$, and therefore it follows that V is \mathbf{U}-open if $f^{-1}[V]$ is \mathbf{T}-open.■

