Mathematics 205A, Fall 2014, Examination 2 $\,$

~

Answer Key

1. [25 points] Let (X, \mathbf{T}) be a (nonempty) topological space which is second countable. Prove that (X, \mathbf{T}) has a countable dense subset.

SOLUTION

Let $\mathcal{B} = \{U_1, U_2, \dots\}$ be a countable base for the topology; we might as well assume each subset is nonempty. For each positive integer j choose some point $d_j \in U_j$, and let $D = \{d_1, d_2, \dots\}$. We claim that D is dense in X.

It suffices to show that if $V \subset X$ is a nonempty open subset, then $V \cap D \neq \emptyset$. But if V is a nonempty set, then V is a union of subsets $U_{\alpha(1)}, U_{\alpha(2)}, etc.$ in \mathcal{B} . In particular, this means that $d_{\alpha(1)} \in U_{\alpha(1)} \cap D \subset V \cap D$, so the latter is indeed nonempty. 2. [25 points] (a) State the definition of a regular topological space.

(b) Let (X, \mathbf{T}) be a locally compact Hausdorff topological space which is not compact, and let $(X^{\bullet}, \mathbf{T}^{\bullet})$ be its one point compactification. Define the underlying topology \mathbf{T}^{\bullet} .

SOLUTION

(a) There are two equivalent definitions: (i) Given a point x and an open set U such that $x \in U$, then there is some open subset V such that $x \in V \subset \overline{V} \subset U$, where the middle set is the closure in X. (ii) Given a point x and a closed set F such that $x \notin F$, there are disjoint open subsets U and V such that $x \in U$ and $F \subset V$. Either answer is acceptable.

(b) By construction X^{\bullet} is the disjoint union $X \amalg \{\infty\}$. The open subsets of X^{\bullet} are the open subsets of X together with subsets of the form $(X - K) \amalg \{\infty\}$, where K is a compact subset of X.

3. [30 points] (a) Let (X, \mathbf{T}) be a (nonempty) topological space. Prove that $X \times \{0\}$ is a strong deformation retract of $X \times [0, 1]$.

(b) Suppose that (X, \mathbf{T}) is a nonempty arcwise connected space and we are given homotopic continuous mappings $f, g: (X, \mathbf{T}) \to (Y, \mathbf{U})$. Explain why there is a single arc component $A \subset Y$ which contains both f[X] and g[X].

SOLUTION

(a) Let $\rho : X \times [0,1] \to X$ be the map sending (x,t) to x, and let i_0 denote the inclusion $X \times \{0\} \subset X \times [0,1]$. Then $\rho \circ i_0 = \operatorname{id}_X$ and the straight line homotopy H(x,t;s) = (x,(1-s)t) defines a homotopy from the identity on $X \times [0,1]$ to the map $i_0 \circ \rho(x,t) = (x,0)$. Since H(x,0;s) = (x,0) for all s, this homotopy is fixed on $X \times \{0\}$, and therefore the existence of $i_0 \circ \rho$ and H shows that $X \times \{0\}$ is a strong deformation retract of $X \times [0,1]$.

(b) Let $H : X \times [0,1]$ be a homotopy from f to g. Since X and [0,1] are arcwise connected, their product is also arcwise connected, and therefore the image of H must be arcwise connected. This image lies in some arc component A of X. Since f and g are given by restricting H to $X \times \{0\}$ and $X \times \{1\}$, it follows that the images of f and g must be contained in A.

4. [20 points] Let n be a positive integer, and define the n-dimensional torus T^n to be the Cartesian product of n copies of the circle S^1 . Prove that T^n and T^m are not homeomorphic if $m \neq n$. [Hint: What are the fundamental groups of these spaces?]

SOLUTION

If e denotes the usual basepoint of T^k whose coordinaes are all 1's, then $\pi_1(T^k, e) \cong \mathbb{Z}^k$. In particular, the fundamental groups of T^n and T^n are isomorphic to \mathbb{Z}^n and \mathbb{Z}^m respectively. Since these groups are not isomorphic if $m \neq n$, it follows that T^n and T^m are not homeomorphic if $m \neq n$.