Mathematics 205A, Fall 2014, Examination 3

Answer Key

1. [15 points] Suppose that X is a compact topological space and we are given a nestedsequence of nonempty closed subsets $F_{1} \supset F_{2} \supset \cdots$. Prove that $\cap_{n=1}^{\infty} F_{n}$ is nonempty.

SOLUTION

Let $U_{n}=X-F_{n}$. Then by hypothesis we have $U_{1} \subset U_{2} \subset \cdots$ and each U_{n} is a proper subset of X. Now $\cap_{n=1}^{\infty} F_{n}$ is nonempty if and only if $\cup_{n=1}^{\infty} U_{n}$ is a proper subset of X, so it suffices to prove the latter assertion.

Suppose that $\cup_{n=1}^{\infty} U_{n}=X$. Then $\mathcal{U}=\left\{U_{n}\right\}$ is an open covering of X, so by compactness there is a finite subcovering. Let U_{N} be the last open set in this subcovering. Since $U_{1} \subset U_{2} \subset \cdots$ it follows that $U_{N}=X$. But this contradicts the fact that each U_{n} is a proper subset; the source of this contradiction was the first sentence in this paragraph, and therefore $\cup_{n=1}^{\infty} U_{n}$ must be a proper subset of X. As noted before, this means that $\cap_{n=1}^{\infty} F_{n}$ is nonempty.■
2. [20 points] If X is a topological space and A is a closed subset of X, let X / A denote the quotient of X by the equivalence relation whose equivalence classes are (i) all one point sets $\{x\}$ such that $x \notin A$ and (ii) the set A, and let $p: X \rightarrow X / A$ denote the quotient space projection. Suppose that $N \subset X / A$ contains the equivalence class $[A]$. Prove that N is an open neighborhood of $[A]$ if and only if $p^{-1}[N]$ is an open subset of X containing A.

SOLUTION

The set $N \subset X / A$ contains the equivalence class $[A]$ if and only if $p^{-1}[N]$ contains A, and N is open if and only if $p^{-1}[N]$ is open..
3. [25 points] Let X and Y be locally compact Hausdorff spaces. Prove that the product space $X \times Y$ is also locally compact Hausdorff. [Hint: Recall that $\overline{A \times B}=\bar{A} \times \bar{B}$.]

SOLUTION

First, a product of Hausdorff spaces is Hausdorff. If $\left(x_{1}, y_{1}\right) \neq\left(x_{2}, y_{2}\right)$, then either $x_{1} \neq x_{2}$ or $y_{1} \neq y_{2}$. In the first case there are disjoint open subsets in X, say U_{1} and U_{2}, such that $x_{i} \in U_{i}$ and $U_{1} \cap U_{2}=\emptyset$. It follows that $U_{1} \times Y$ and $U_{2} \times Y$ are disjoint open subsets containing the original two points. - In the second case there are disjoint open subsets in Y, say V_{1} and V_{2}, such that $y_{i} \in V_{i}$ and $V_{1} \cap V_{2}=\emptyset$. It follows that $X \times V_{1}$ and $X \times V_{2}$ are disjoint open subsets containing the original two points.

It remains to prove that $X \times Y$ is locally compact. Let $(x, y) \in X \times Y$, and let W be an open subset containing (x, y). By the definition of the product topology there are open neighborhoods U_{0} and V_{0} of x and y such that $(x, y) \in U_{0} \times V_{0} \subset W$. Furthermore, since X and Y are locally compact Hausdorff there are open subneighborhoods U and V such that $x \in U \subset \bar{U} \subset U_{0}$ and $y \in V \subset \bar{V} \subset V_{0}$ where \bar{U} and \bar{V} are both compact. We then have

$$
(x, y) \in U \times V \subset \bar{U} \times \bar{V} \subset U_{0} \times V_{0} \subset W
$$

The product of the closures is compact because it is the product of two compact spaces, and as noted in the hint it is equal to the closure of $U \times V$. Therefore we have constructed an open neighborhood W_{0} of (x, y) whose closure is compact and contained in W, and hence $X \times Y$ is locally compact.
4. [20 points] Prove that the unit sphere S^{n} is a strong deformation retract of $\mathbb{R}^{n+1}-\{\mathbf{0}\}$.

SOLUTION

Define the retraction $\rho: \mathbb{R}^{n+1}-\{\mathbf{0}\} \rightarrow S^{n}$ by $\rho(x)=|x|^{-1} \cdot x$; by construction $\rho \mid S^{n}$ is the identity. Let $i: S^{n} \rightarrow \mathbb{R}^{n+1}-\{\mathbf{0}\}$ be the inclusion, and define a homotopy from $i^{\circ} \rho$ to the identity by the straight line homotopy.

$$
H(x, t)=(1-t) x+t^{\circ} \rho(x)
$$

We then have $H_{0}=$ identity, $H_{1}=i^{\circ} \rho$, and $H(x, t)=x$ for $x \in S^{n}$ and t arbitrary, so the only thing to check is that $H(x, t)$ is never zero.

Since $\rho(x)$ is a scalar multiple of x, it follows that $H(x, t)$ is always a scalar multiple of x, and hence it is enough to show that the coefficient of x in the formaula is always nonzero. But this coefficient is

$$
(1-t)+t \cdot|x|^{-1}
$$

where $|x|>0$ and $t \in[0,1]$. If $t=0$ this coefficient reduces to 1 , and if $t>0$ then also $1-t>0$, and therefore the coefficient is a positive real number. Therefore $H(x, t)$ is never zero and hence defines a homotopy from $\left(\mathbb{R}^{n+1}-\{\mathbf{0}\}\right) \times[0,1]$ to $\mathbb{R}^{n+1}-\{\mathbf{0}\} . \boldsymbol{\square}$
5. [20 points] Suppose that the continuous mapping $p: X \rightarrow Y$ is a covering space projection and that Y is connected. Prove that if y_{0} and y_{1} are arbitrary points of Y, then the cardinalities of the sets $p^{-1}\left[\left\{y_{0}\right\}\right]$ and $p^{-1}\left[\left\{y_{1}\right\}\right]$ are equal. [Hint: Why is this true if y_{1} lies in an evenly covered open neighborhood of y_{0} ?]

SOLUTION

Define an equivalence relation \mathcal{E} on Y such that two points are \mathcal{E}-equivalent if and only if their inverse images in X have the same cardinality. If $y_{0} \in Y$ and U is an evenly covered open neighborhood of y_{0}, the it follows immediately that every point in U is \mathcal{E}-equivalent to y_{0}. Therefore each \mathcal{E}-equivalence class is open in Y.

If E is an equivalence class, the reasoning of the preceding paragraph implies that the union of all the remaining equivalence classes is also open, and therefore E is also closed in Y. But Y is connected, so the only nonempty open and closed subset of Y is Y itself. Therefore if E is an equivalence class, then $E=Y$, and this means that for all point the inverse images have the same cardinality.

