Mathematics 205A, Fall 2014, "Examination 4"

Answer Key

1. (i) If A is a retract of X and $p \in A$, then the induced map of fundamental groups $\pi_{1}(A, p) \rightarrow \pi_{1}(X, p)$ is $1-1$. If $\mathbb{R} \mathbb{P}^{1}$ is homeomorphic to a retract of $\mathbb{R} \mathbb{P}^{n}$ if $n \geq 2$, this means that $\pi_{1}\left(\mathbb{R} \mathbb{P}^{1}\right)$ is isomorphic to a subgroup of $\pi_{1}\left(\mathbb{R} \mathbb{P}^{n}\right)$. Since the first group is infinite cyclic and the second is cyclic of order 2 , we know that $\pi_{1}\left(\mathbb{R P}^{1}\right)$ is not isomorphic to a subgroup of $\pi_{1}\left(\mathbb{R} \mathbb{P}^{n}\right)$, and this yields the conclusion in this part of the problem.-
(ii) First of all, there are two points in the inverse image of $f^{-1}\left(z_{0}\right)$ because there are two distinct square roots for every nonzero complex number, and if z_{0} has unit length then the two roots w_{j} also have unit length (note that $1=\left|z_{0}\right|=\left|w_{j}^{2}\right|=\left|w_{j}\right|^{2}$).

Regarding the main part of the problem, let $p: \mathbb{R} \rightarrow S^{1}$ be the usual covering space projection, and let $z_{0}=p\left(t_{0}\right)$. If $0<s-u<1$ let $\operatorname{ARC}(s, u)$ denote the open arc which is the image of the open interval (s, u) under p. Then one can check directly that the inverse image of the open semicircle ARC $\left(t_{0}-\frac{1}{4}, t_{0}+\frac{1}{4}\right)$ is the union of the two open quarter circles ARC $\left(\frac{1}{2} t_{0}-\frac{1}{8}, t_{0}+\frac{1}{8}\right)$ and $\operatorname{ARC}\left(\frac{1}{2} t_{0}+\frac{3}{8}, t_{0}+\frac{5}{8}\right)$. - Geometrically, the inverse image of a 90° arc centered at $p\left(t_{0}\right)$ is a pair of 45° arcs which are centered at $p\left(\frac{1}{2} t_{0}\right)$ and $-p\left(\frac{1}{2} t_{0}\right)=p\left(\frac{1}{2} t_{0}+\frac{1}{2}\right)$.
2. Follow the hint, and start with the free group F on k generators. Let N be the normal subgroup which is (normally) generated by all elements of the form x^{n}, where n runs through all the elements of F, and define G to be the quotient F / N. Then by construction G has k generators, and $g^{n}=1$ for all $g \in G$.

Suppose now that H is an arbitrary group such that H has k generators and $h^{n}=1$ for all $h \in H$. Then there is a homomorphism $\varphi_{0}: F \rightarrow H$ which sends the free generators of F to a set of k generators for H. It follows that φ_{0} is onto because its image contains a set of generators for H; let L be the kernel of φ_{0}. Since $h^{n}=1$ for all $h \in H$ and φ_{0} is onto, it follows that if $x \in F$ then $x^{n} \in L$. Now N is the unique minimal normal subgroup containing all the powers x^{n}, and therefore we have $N \subset L$, which implies that

$$
H \cong F / L \cong(F / N) /(L / N)
$$

is isomorphic to a quotient group of $G=F / N$.
Note. Chapter 18 of Hall, Theory of Groups (MacMillan, 1959), provides further information on the Burnside Problem mentioned in the examination itself.
3. (i) Use the Seifert-van Kampen Theorem. The latter implies that $\pi_{1}(X, p)$ is isomorphic to the free product of G and $\{1\}$ modulo the normal subgroup (normally) generated by all elements of the $i(h) \cdot j(h)^{-1}$ where $i: H \subset G$ and $j: H \rightarrow\{1\}$ is the trivial homomorphism. Since j is trivial, the normal subgroup is actually generated by the elements $i(h)$, and under the standard identification of $G *\{1\}$ with G, this subgroup corresponds to H. Therefore $\pi_{1}(X, p)$ is isomorphic to G / H.■
(ii) Once again, use the Seifert-van Kampen Theorem, and also follow the hint. Recall that U and V are the open subsets of $\mathbb{R}^{n}-\left\{p_{0}, p_{1}\right\}$ defined by the first coordinate inequalities $x_{1}<1$ and $x_{1}>0$ respectively.

Since $U \cap V=(0,1) \times \mathbb{R}^{n-1}$ and the latter is contractible, the Seifert-van Kampen Theorem implies that $\pi_{1}\left(\mathbb{R}^{n}-\left\{p_{0}, p_{1}\right\}, p_{1 / 2}\right)$ is isomorphic to the free product of $\pi_{1}\left(U, p_{1 / 2}\right)$ and $\pi_{1}\left(V, p_{1 / 2}\right)$.

Therefore it is enough to show that both of these groups are trivial. In both cases this can be done by the same sort of proof which shows that $\pi_{1}\left(\mathbb{R}^{n}-\{p\}\right)$ is trivial for each $p \in \mathbb{R}^{n}$ (approximate a closed curve by a broken line curve, and show that the image of this curve lies in a finite union of hyperplanes).
P.S. We can prove that that $\mathbb{R}^{n}-\left\{p_{0}, \cdots, p_{k}\right\}$ is also simply connected by an inductive argument which is similar to the preceding solution.

For each j such that $j \leq k$ let U_{j} be the set of all points in $\mathbb{R}^{n}-\left\{p_{0}, \cdots, p_{k}\right\}$ such that $x_{1}<k+1$, and let V be the set of all points whose first coordinates satisfy $x_{1}>k-1$. The solution to (ii) implies that U_{0} and V_{1} are simply connected. Similarly, if V_{k} is the set of all points in $\mathbb{R}^{n}-\left\{p_{0}, \cdots, p_{k}\right\}$ such that $x_{1}>k-1$, then the same reasoning as in the solution to (ii) implies that V_{k} is simply connected.

Consider the following statements, which are meaningful for all $k \geq 1$:
$\left(A_{k}\right)$ The open set U_{j} is simply connected for all $j<k$.
$\left(B_{k}\right)$ The open set $\mathbb{R}^{n}-\left\{p_{0}, \cdots, p_{k}\right\}$ is simply connected.
The solution to (ii) shows that $\left(A_{1}\right)$ and $\left(B_{1}\right)$ are true, so we have the starting point for an inductive argument.

We shall first prove that $\left(A_{k}\right)$ implies $\left(B_{k}\right)$ for all k. This follows as in the solution to (ii), for we know that

$$
\mathbb{R}^{n}-\left\{p_{0}, \cdots, p_{k}\right\}=U_{k} \cup V_{k}, \quad(k-1, k+1) \times \mathbb{R}^{n-1}=U_{k} \cap V_{k}
$$

and hence $\mathbb{R}^{n}-\left\{p_{0}, \cdots, p_{k}\right\}$ is a union of two simply connected open subsets whose intersection is arcwise connected. Therefore $\mathbb{R}^{n}-\left\{p_{0}, \cdots, p_{k}\right\}$ is simply connected by the Seifert-van Kampen Theorem.

Next, we shall prove that $\left(A_{k}\right)$ implies $\left(A_{k+1}\right)$ for all k. Let W_{k} be the set of points in $\mathbb{R}^{n}-\left\{p_{0}, \cdots, p_{k}\right\}$ whose first coordinates satisfy $k-1<x_{1}<k+1$; once again the argument in the solution to (ii) implies that W_{k} is simply connected. Then we have

$$
U_{k+1}=U_{k} \cup W_{k}^{\iota}, \quad(k-1, k+1) \times \mathbb{R}^{n-1}=U_{k} \cap W_{k}
$$

and by the same reasoning as in the preceding paragraph we see that U_{k+1} is also simply connected

