
Mathematics 205A, Fall 2014, “Examination 4”

Answer Key

1. (i) If A is a retract of X and p ∈ A, then the induced map of fundamental groups
π1(A, p) → π1(X, p) is 1–1. If RP

1 is homeomorphic to a retract of RP
n if n ≥ 2, this means that

π1(RP
1) is isomorphic to a subgroup of π1(RP

n). Since the first group is infinite cyclic and the
second is cyclic of order 2, we know that π1(RP

1) is not isomorphic to a subgroup of π1(RP
n), and

this yields the conclusion in this part of the problem.

(ii) First of all, there are two points in the inverse image of f−1(z0) because there are two
distinct square roots for every nonzero complex number, and if z0 has unit length then the two
roots wj also have unit length (note that 1 = |z0| = |w2

j | = |wj |
2).

Regarding the main part of the problem, let p : R → S1 be the usual covering space projection,
and let z0 = p(t0). If 0 < s − u < 1 let ARC(s, u) denote the open arc which is the image of
the open interval (s, u) under p. Then one can check directly that the inverse image of the open
semicircle ARC

(

t0 −
1

4
, t0 + 1

4

)

is the union of the two open quarter circles ARC
(

1

2
t0 −

1

8
, t0 + 1

8

)

and ARC
(

1

2
t0 + 3

8
, t0 + 5

8

)

. — Geometrically, the inverse image of a 90◦ arc centered at p(t0) is a
pair of 45◦ arcs which are centered at p( 1

2
t0) and −p( 1

2
t0) = p( 1

2
t0 + 1

2
).

2. Follow the hint, and start with the free group F on k generators. Let N be the normal
subgroup which is (normally) generated by all elements of the form xn, where n runs through all
the elements of F , and define G to be the quotient F/N . Then by construction G has k generators,
and gn = 1 for all g ∈ G.

Suppose now that H is an arbitrary group such that H has k generators and hn = 1 for all
h ∈ H. Then there is a homomorphism ϕ0 : F → H which sends the free generators of F to a set
of k generators for H. It follows that ϕ0 is onto because its image contains a set of generators for
H; let L be the kernel of ϕ0. Since hn = 1 for all h ∈ H and ϕ0 is onto, it follows that if x ∈ F
then xn ∈ L. Now N is the unique minimal normal subgroup containing all the powers xn, and
therefore we have N ⊂ L, which implies that

H ∼= F/L ∼= (F/N) / (L/N)

is isomorphic to a quotient group of G = F/N .

Note. Chapter 18 of Hall, Theory of Groups (MacMillan, 1959), provides further information on
the Burnside Problem mentioned in the examination itself.

3. (i) Use the Seifert-van Kampen Theorem. The latter implies that π1(X, p) is isomorphic
to the free product of G and {1} modulo the normal subgroup (normally) generated by all elements
of the i(h) · j(h)−1 where i : H ⊂ G and j : H → {1} is the trivial homomorphism. Since j is
trivial, the normal subgroup is actually generated by the elements i(h), and under the standard
identification of G ∗ {1} with G, this subgroup corresponds to H. Therefore π1(X, p) is isomorphic
to G/H.

(ii) Once again, use the Seifert-van Kampen Theorem, and also follow the hint. Recall that U
and V are the open subsets of R

n −{p0, p1} defined by the first coordinate inequalities x1 < 1 and
x1 > 0 respectively.

Since U ∩ V = (0, 1) × R
n−1 and the latter is contractible, the Seifert-van Kampen Theorem

implies that π1(R
n −{p0, p1}, p1/2) is isomorphic to the free product of π1(U, p1/2) and π1(V, p1/2).



Therefore it is enough to show that both of these groups are trivial. In both cases this can be done
by the same sort of proof which shows that π1(R

n − {p}) is trivial for each p ∈ R
n (approximate a

closed curve by a broken line curve, and show that the image of this curve lies in a finite union of
hyperplanes).

P.S. We can prove that that R
n−{p0, · · · , pk} is also simply connected by an inductive argument

which is similar to the preceding solution.
For each j such that j ≤ k let Uj be the set of all points in R

n − {p0, · · · , pk} such that
x1 < k + 1, and let V be the set of all points whose first coordinates satisfy x1 > k − 1. The
solution to (ii) implies that U0 and V1 are simply connected. Similarly, if Vk is the set of all points
in R

n − {p0, · · · , pk} such that x1 > k − 1, then the same reasoning as in the solution to (ii)
implies that Vk is simply connected.

Consider the following statements, which are meaningful for all k ≥ 1:

(Ak) The open set Uj is simply connected for all j < k.

(Bk) The open set R
n − {p0, · · · , pk} is simply connected.

The solution to (ii) shows that (A1) and (B1) are true, so we have the starting point for an inductive
argument.

We shall first prove that (Ak) implies (Bk) for all k. This follows as in the solution to (ii), for
we know that

R
n − {p0, · · · , pk} = Uk ∪ Vk , (k − 1, k + 1) × R

n−1 = Uk ∩ Vk

and hence R
n − {p0, · · · , pk} is a union of two simply connected open subsets whose intersection

is arcwise connected. Therefore R
n −{p0, · · · , pk} is simply connected by the Seifert-van Kampen

Theorem.

Next, we shall prove that (Ak) implies (Ak+1) for all k. Let Wk be the set of points in
R

n − {p0, · · · , pk} whose first coordinates satisfy k − 1 < x1 < k + 1; once again the argument in
the solution to (ii) implies that Wk is simply connected. Then we have

Uk+1 = Uk ∪ Wk‘, (k − 1, k + 1) × R
n−1 = Uk ∩ Wk

and by the same reasoning as in the preceding paragraph we see that Uk+1 is also simply connected.


