
Introduction

This is the second part of the first entry level graduate courses in topology and geometry, and
the goal is to develop algebraic techniques for analyzing closed curves in a topological space. More
detailed discussions of the motivation and approach are given below and at the beginning of Unit
VII (the first unit in this part of the course). The numbering of these notes is a continuation of the
numbering in the notes for the first part of the course (the file gentopnotes2014.pdf); for example,
Theorem VI.7.8 would refer to Theorem 8 in Section VI.7 of the cited document (however, there is
no such section in those notes).

The basic texts for this portion of the course are the following:

[M] J. R. Munkres. Topology (Second Edition), Prentice-Hall, Saddle River NJ, 2000.
ISBN: 0–13–181629–2. [This is the text for the previous course in the sequence.]

[H] A. Hatcher. Algebraic Topology (Third Paperback Printing), Cambridge University

Press, New York NY, 2002. ISBN: 0–521–79540–0.

This book can be legally downloaded from the Internet at no cost for personal use, and here is the
link to the online version:

www.math.cornell.edu/∼hatcher/AT/ATpage.html

The material in this part of the course has become fairly standard, and it is directly related to
some phenomena involving line integrals and functions of a complex variable. One major theme is
the creation of algebraic “pictures” of a topological space which are obtained by studying certain
types of topological configurations in the space. Ever since (at least) the beginning of the 17th

century, mathematicians and others have recognized the effectiveness and power of algebraic tech-
niques for analyzing geometrical problems by transforming geometric input into algebraic terms,
solving the associated algebraic questions, and translating the algebraic results back into the orig-
inal geometric setting. The central concept in the second part of the course is the fundamental
group of a space, which is an algebraic object constructed from the 1-dimensional configurations
given by closed curves which start and end at a fixed basepoint.

One way to compare the two parts of the course is to describe the conclusions which follow
from the respective methods: Using point set topology one can show that R and R

n are not
homeomorphic if n ≥ 2, and using point fundamental groups, one can show that R

2 and R
n are

not homeomorphic if n ≥ 3. — In the second course of the geometry/topology sequence, still other
methods are developed to prove that R

m and R
n are never homeomorphic if m 6= n. Although this

may seem obvious intuitively, it is still necessary to give a formal proof because intuition can be
misleading.
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Comments on the texts

Taking all things into account, the first part of Munkres (on point set topology) is one of the
very best accounts of the subject, with an excellent balance of clear exposition, logical completeness
and drawings to motivate the underlying geometrical content of the subject (there are some peculiar
choices of terms and symbolism, and in a number of instances more motivation would help, but the
perfect text is an ideal which is rarely if ever realized). The second part of Munkres, which includes
the material on fundamental groups, comes close to meeting this standard. However, there are
numerous cases where more motivational comments and drawings would help, and sometimes the
logical thoroughness of the exposition interferes with its clarity. To its credit, the second part gives
logically complete accounts of several basic applications of topology to basic geometrical results
like the Fundamental Theorem of Algebra and the Jordan Curve Theorem (a simple closed curve
in the plane separates it into two connected pieces), but the proofs really push the theory in the
book to its limits, and consequently the reasoning is often very delicate and difficult to follow. We
shall see that homology theory often yields much simpler and more conceptual proofs.

Hatcher’s book begins by covering the same topics which appear in the second half of Munkres,
and it proceeds to go much further in the subject. The challenges faced in covering the further
material are much greater than the corresponding challenges in Munkres. In particular, the gap
between abstract formalism and geometrical intuition is much greater, and it is not clear how
well any single book can reconcile these complementary factors. More often than not, algebraic
topology books stress the former at the expense of the latter, and one important strength of
Hatcher’s book is that its emphasis tilts very much in the opposite direction. The book makes a
sustained effort to include examples that will provide insight and motivation, using pictures as well
as words, and it also attempts to explain how working mathematicians view the subject. Because
of these objectives, the exposition in Hatcher is significantly more casual than in many books on
the subject. Unfortunately, the book’s informality is arguably taken too far in numerous places,
leading to significant problems in several directions; these include assumptions about prerequisites,
clarity, wordiness, thoroughness and some sketchy motivations that are difficult for many readers
to grasp.
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Prerequisites

This part of the course is based upon material developed in the first part. There is also some
background material which is needed here but does not appear in the first part of the course.

Algebra

Some concepts in group theory are needed; most are at the undergraduate level. Several other
concepts from group theory are presented in Munkres and will be covered in the course. Material
from standard undergraduate linear algebra courses will also be used as needed. Everything we
need can be found in the following standard graduate algebra textbook:

T. Hungerford. Algebra. (Reprint of the 1974 original edition, Graduate Texts in
Mathematics, No. 73.) Springer-Verlag, New York–Berlin–etc., 1980. ISBN: 0–387–
90518–9.

At some points in this course we shall invoke the following basic result, which is proved in
graduate level algebra courses (for example, Sections II.1 and II.2 of Hungerford).

STRUCTURE THEOREM FOR FINITELY GENERATED ABELIAN GROUPS. Let
G be a finitely generated abelian group (so every element can be written as a monomial in integral
powers of some finite subset S ⊂ G). Then G is isomorphic to a direct sum

( H1 ⊕ · · · ⊕ Hb ) ⊕ ( K1 ⊕ · · · ⊕ Ks )

where each Hi is infinite cyclic and each Kj is finite of order tj such that tj+1 divides tj for all j.
— For the sake of uniformity set tj = 1 if j > s. Then two direct sums as above which are given
by (b; t1, · · · ) and (b′; t′1, · · · ) are isomorphic if and only if b = b′ and tj = t′j for all j.

For the purposes of this course, it is enough to understand the statement of the structure
theorem; the proof itself is not part of the course or its prerequisites.

Analysis

We shall assume the basic material from an upper division undergraduate course in real vari-
ables as well as material from a lower division undergraduate course in multivariable calculus
through the theorems of Green and Stokes as well as the 3-dimensional Divergence Theorem. The
classic text by W. Rudin (Principles of Mathematical Analysis, Third Edition) is an excellent refer-
ence for real variables, and the following multivariable calculus text contains more information on
the that subject than one can usually find in the usual 1500 page calculus texts (unfortunately, this
book is far from perfect, but especially at the graduate level it may be useful for review purposes).
Clearly there are also many other sources for this material; the main point is that a reader might
have to refresh his or her memory on a few topics at some points in the notes.

J. E. Marsden and A. J. Tromba. Vector Calculus (Fifth Edition), W. H. Freeman

& Co., New York NY, 2003. ISBN: 0–7147–4992–0.
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Category theory

The concept of a category does not appear explicitly in Munkres, but it is implicit in many
places, and at numerous points in these notes it will be useful to formulate things using categories
as part of the framework. We have attempted to limit this usage to situations where the formalism
seems to simplify the discussion, so only need a few basic ideas are needed, and we shall summarize
here the concepts that appear almost immediately in the notes. The course directory file

categories2014.pdf

(which is 10 pages long) gives a more organized treatment of the topics discussed here, and reading

the document is an implicit assignment for the course.

A category is an abstract mathematical system which reflects some very basic features of many
classes of mathematical objects and the well-behaved morphisms relating them. In set theory the
objects and morphisms are sets and functions of sets, and in topology the most basic examples
involve topological spaces and continuous mappings. There are many algebraic examples, including
groups and morphisms, vector spaces over a fixed field F and F-linear transformations, or partially
ordered sets and monotonically increasing functions. Many other examples appear in the file cited
above.

In addition to a family of objects as above, the data for a category also include morphisms

from one object to another with specified objects as their domains (sources) and codomains (tar-
gets); a morphism together with its domain and codomain are generally denoted by notation like
f : A → B. There are also binary algebraic operations defined for certain pairs of morphisms, and
these behave formally like composition of functions in the following respects:

(i) The composition g of of g and f is defined if and only if the target of f is the source of g.

(ii) For each object X there is an “identity morphism” 1X : X → X (sometimes we call this
map idX), and for each morphism f : A → B we have 1B

of = f = f o1A.

(iii) There is an associative law h o(g of) = (h og) of for threefold compositions.

The most important additional concept is that of an isomorphism between two objects A

and B. This involves a pair of morphisms f : A → B and g : B → A such that g of = 1A and
f og = 1B . As elsewhere in mathematics, if one has such a pair of morphisms we say that f and g

are inverse to each other (or inverses of each other).

The ubiquity of categories reflects a basic fact: If a class of mathematical objects is defined, it
is usually possible to define a good concept of mappings or morphisms from one object to another
without too much trouble. — From this perspective, it is natural to speculate about an appropriate
notion of morphism relating one category to another. It turns out that there are two such notions
called contravariant functors and covariant functors. A covariant functor is a system of
transformations such that

(a) for each object X in the source category there is an associated object T (X) in the target
category,

(b) for each morphism f : X → Y in the source category there is an associated morphism
T (f) : T (X) → T (Y ) in the target category,

(c) the construction on morphisms preserves identity morphisms and compositions; the latter
means that T (g of) = T (g) oT (f).
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Here is an example involving topological spaces: If X is a topological space, let T (X) be the
set of continuous curves γ : [0, 1] → X, and if f : X → Y is continuous define T (f)γ = f oγ.
The fundamental group of a pointed space is a more sophisticated example of this sort going from
pointed topological spaces to groups.

As noted above, there is also a dual concept of contravariant functor from one category to
another; the main differences with covariant functors are that a morphism f : A → B is sent to
T (f) : T (B) → T (A) (i.e., the domain and codomain are switched) and the composition identity
is T (g of) = T (f) oT (g) (i.e., the order of composition is reversed).

One basic example of a contravariant functor is the dual space construction on a category of
vector spaces over some field F. Specifically, a vector space V is sent to the space V ∗ of F-linear
functionals V → F, and if T : V → W is a linear transformation then T ∗ : W ∗ → V ∗ sends a linear
functional f : V → F to the composite T of .

Functors have a simple but far-reaching property which is fairly easy to prove: If the morphisms
f and g are inverse to each other and T is a functor (covariant or contravariant), then F (f) and
F (g) are also inverse to each other.

Since functors are mathematical objects, one can speculate even further about morphisms
relating functors and whether such a notion is more than a formal curiosity. It turns out that
there is an extremely useful notion called a natural transformation of functors (where both the
source and target have the same variance). Since this concept is not needed until later in the course
sequence, we shall pass on discussing it here.
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