
Conditions for contiuity of inverse functions

If f : X → Y is a continuous function which is 1–1 and onto, then there is a set-theoretic inverse
to f , but there are also many examples to show that this inverse function need not be continuous.
However, there are numerous conditions of a general nature which imply the continuity of inverses.
One of the simplest examples involves linear transformations. Basic results in linear algebra imply
the following:

Theorem. If T : V → W be a linear transformation of finite-dimensional vector spaces which
is 1 − 1 and onto, then the inverse mapping T −1 from W to V is also a linear transformation. In
paticular, if V and W are inner product spaces, then T −1 is linear and hence T is a homeomorphism
(since linear transformations on finite-dimensional inner product spaces are continuous).

Similarly, Proposition 13.26 in Sutherland shows that if X and Y are compact Hausdorff spaces
and f : X → Y is continuous and 1–1 onto, then f is a homeomorphism (and hence its inverse is
continuous). The main purpose of this document is to derive yet another result of this type which
comes from multivariable calculus:

Global Inverse Function Theorem. Let U and V be open subsets in R
n, and let f : U → V

be a 1 − 1 onto continuous function which satsifies the following differentiability conditions:

(i) If the coordinate functions for f are given by y1, · · · , yn then each function yi has
continuous partial derivatives.

(ii) The Jacobian determinant

∂(y1, · · · , yn)

∂(x1, · · · , xn)
= det

(

∂yi

∂xj

)

is nonzero at every point of U .

Then f is a homeomorphism.

We shall prove this using the following standard result from multivariable calculus:

Local Inverse Function Theorem. Let U be an open subset of R
n, let p be a point in U , and

let f : U → R
n be a continuous function which satsifies the following differentiability conditions:

(i) If the coordinate functions for f are given by y1, · · · , yn then each function yi has
continuous partial derivatives near p.

(ii) The Jacobian determinant

∂(y1, · · · , yn)

∂(x1, · · · , xn)
= det

(

∂yi

∂xj

)

is nonzero at p.

Then f has a local inverse; specifically, there are open neighborhoods V and W of p and f(p)
respectively such that V ⊂ U , f induces a 1 − 1 onto mapping from V to W , and the inverse
mapping g : W → V is also a function whose coordinates have continuous partial derivatives at
every point.
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This central result in multivariable calculus can be found in virtually every multivariable calcu-
lus textbook, so we shall not try to give a reference. However, we note one important consequence.

Corollary. In the setting of the Local Inverse Function Theorem, the restricted map f |V sends
open subsets of the open set V into open subsets of R

n.

Note that open subsets of V can be interpreted either with respect to the subspace topology
on V or with respect to the usual topology on R

n.

Proof of the Corollary. Let h : V → W be the map defined by f . Then the theorem implies
that h is a homeomorphism and accordingly sends open subsets of V into open subsets of W . Since
V and W are both open in R

n, it follows that if V0 is an open subset of R
n contained in V , then

h[V0] = f [V0] is an open subset of R
n.

Deriving the global theorem from the local theorem

If we apply the local theorem and its corollary, we see that if p ∈ U then there is some open
neighborhood Vp of p such that Vp ⊂ U and f |Vp is an open mapping.

Suppose now that Ω is an open subset in U . Then we have Ω = ∪p Ω ∩ Vp and hence

f [Ω] = f





⋃

p∈Ω

Ω ∩ Vp



 =
⋃

p∈Ω

f [Ω ∩ Vp] .

By the first paragraph of this proof, each of the summands on the right hand side is an open set in
R

n, and therefore their union, which is merely f [Ω], is also an open set in R
n. This means that f

is an open mapping. Since we are given that f is continuous and 1–1 onto, the preceding sentence
implies that f maps U homeomorphically onto f [U ].

Two generalizations

There are many ways in which this result has been generalized in higher mathematics. We
shall mention two which often appear in introductory graduate level courses.

Invariance of Domain. (L. E. J. Brouwer) Let f : U → R
n be a continuous function which is

1 − 1 and onto. Then f is an open mapping and hence defines a homeomorphism from U to f [U ].

Versions of this result appear in nearly all introductory books on algebraic topology. The specific
formulation given above can be found on page 79 of the following standard textbook:

A. Dold, Lectures on Algebraic Topology (Second Edition). Springer-Verlag, New York
etc., 1980.

In order to state the second result we need some background. A Banach space is a normed
vector space which is complete in the associated metric. Given two Banach spaces E and F and a
continuous mapping f : U → F — where U is open in E — then one can formulate a concept of
differentiability for a function f and a point p ∈ U such that the derivative Df(p) lies in the space
L(E,F ) of continuous linear transformations from E to F . The space L(E,F ) has a canonical
normed vector space structure, so if a function is differentiable everywhere it is meaningful to
discuss the continuity of the derivative mapping Df : U → L(E,F ); details are given in Chapter
I of the book by Lang cited below. Note that if E and F are finite-dimensional, then Df(p)
corresponds to the usual matrix of partial derivatives for the coordinate functions of f .
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We then have the following result:

Local Inverse Function Theorem for Banach Spaces. Let U be an open subset of the
Banach space E, let p be a point in U , and let f : U → E be a continuous function which satsifies
the following differentiability conditions:

(i) The derivative of f is defined on a neighborhood U0 and the associated function Df :
U0 → L(E,E) is continuous near p.

(ii) The derivative Df(p) is an invertible element of L(E,E).

Then f has a local inverse; specifically, there are open neighborhoods V and W of p and f(p)
respectively such that V ⊂ U , f induces a 1 − 1 onto mapping from V to W , and the inverse
mapping g : W → V is also a function with a continuous derivative at every point.

A standard reference for this result is the following classic graduate textbook:

S. Lang, Introduction to Differentiable Manifolds. Springer-Verlag, New York etc., 2002.

3


